Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Langmuir ; 40(3): 1646-1657, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38206825

RESUMEN

The encapsulation efficiency and stability over time of either vitamin B12, a model hydrophilic drug, or an aqueous suspension of Cydia pomonella granulovirus (CpGV), which is a biopesticide, using a water-in-sunflower oil-in-water (W1/O/W2) double emulsion, are studied. Two antagonistic stabilizers are used to prepare the double emulsion: the mainly lipophilic polyglycerol polyricinoleate (PGPR) and the mainly hydrophilic polysaccharide Arabic gum (AG). Combining ultraviolet-visible (UV-visible) titration, rheology, and oil globule size measurement allows assessing drug release, emulsion elasticity, and globule evolution as a function of time. A stability diagram is plotted as a function of two determining parameters: the nonadsorbed PGPR concentration in the oil and the inner water droplet fraction. To understand the presence of the nonstability domains, the influence of the two identified parameters on the outermost interfacial tension is examined. Surprisingly, the inner water drop volume fraction exhibits a stabilizing phenomenon that is discussed in terms of interfacial shielding to PGPR adsorption.

2.
Langmuir ; 34(8): 2823-2833, 2018 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-29406736

RESUMEN

Water-in-oil-in-water (W1/O/W2) double emulsions stabilized by polyglycerol polyricinoleate (PGPR), a lipophilic food grade small polymer, and sodium caseinate, a hydrophilic milk protein, were developed to encapsulate vitamin B12, a model hydrophilic substance easy to titrate. Using rheology, sensitive to drop size evolution and water fluxes, static light scattering, and microscopy both giving the evolution of drops' size and vitamin B12 titration assessing the encapsulation, we were able to detect independently the double emulsion drop size, the encapsulation loss, and the flux of water as a function of time. By differentiating the PGPR required to cover the W1-droplets' surface from PGPR in excess in the oil phase, we built a PGPR-inner droplet volume fraction diagram highlighting the domains where the double emulsion is stable toward encapsulation and/or water fluxes. We demonstrated the key role played by nonadsorbed PGPR concentration in the intermediate sunflower oil phase on the emulsion stability while, surprisingly, the inner droplet volume fraction had no effect on the emulsion stability. At low PGPR concentration, a release of vitamin B12 was observed and the leakage mechanism of coalescence between droplets and oil-water interface of the oily drops (also called globules hereafter), was identified using confocal microscopy. For high enough PGPR content, the emulsions were stable and may therefore serve as efficient capsules without need of an additional gelling, thickening, complexion or interface rigidifying agent. We generalized these results with the encapsulation of an insecticide: Cydia pomonella granulovirus used in organic arboriculture.

3.
Soft Matter ; 12(14): 3412-24, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-26936127

RESUMEN

We study the influence of the emulsification process on encapsulation efficiency of drugs in double water-in-oil-in-water emulsions. Two drugs were used, first vitamin B12 which can be considered as a model drug and secondly a suspension of Cydia pomonella Granulovirus (CpGV), a virus used in organic agriculture to protect fruits against the Carpocapse insect. Encapsulation is measured by classical UV-Vis spectroscopy method. Additionally we show that rheology is a useful tool to determine water exchanges during emulsification. In a two-step emulsification process, using rotor-stator mixers, encapsulation reaches high levels, close to 100% whatever the flowing regime. This encapsulation decreases only if two conditions are fulfilled simultaneously: (i) during the second emulsification step the flow is turbulent and (ii) it leads to excessive fragmentation inducing formation of too small drops. We also investigate the effect of a deliberate loss of osmotic pressure balance on the encapsulation and characterize the induced water fluxes. We show that encapsulation of vitamin B12 is not affected by the osmotic pressure unbalance, while water exchanges, if they exist, are very fast and aim at restoring equilibrium. As a consequence, the emulsification efficiency is not very sensitive to osmotic stresses provided that the interfaces resist mechanically.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA