Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Nature ; 620(7974): 615-624, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37558872

RESUMEN

The concomitant occurrence of tissue growth and organization is a hallmark of organismal development1-3. This often means that proliferating and differentiating cells are found at the same time in a continuously changing tissue environment. How cells adapt to architectural changes to prevent spatial interference remains unclear. Here, to understand how cell movements that are key for growth and organization are orchestrated, we study the emergence of photoreceptor neurons that occur during the peak of retinal growth, using zebrafish, human tissue and human organoids. Quantitative imaging reveals that successful retinal morphogenesis depends on the active bidirectional translocation of photoreceptors, leading to a transient transfer of the entire cell population away from the apical proliferative zone. This pattern of migration is driven by cytoskeletal machineries that differ depending on the direction: microtubules are exclusively required for basal translocation, whereas actomyosin is involved in apical movement. Blocking the basal translocation of photoreceptors induces apical congestion, which hampers the apical divisions of progenitor cells and leads to secondary defects in lamination. Thus, photoreceptor migration is crucial to prevent competition for space, and to allow concurrent tissue growth and lamination. This shows that neuronal migration, in addition to its canonical role in cell positioning4, can be involved in coordinating morphogenesis.


Asunto(s)
Movimiento Celular , Morfogénesis , Células Fotorreceptoras , Retina , Animales , Humanos , Actomiosina/metabolismo , Competencia Celular , Diferenciación Celular , Movimiento Celular/fisiología , Proliferación Celular , Microtúbulos/metabolismo , Morfogénesis/fisiología , Organoides/citología , Organoides/embriología , Células Fotorreceptoras/citología , Células Fotorreceptoras/fisiología , Retina/citología , Retina/embriología , Pez Cebra/embriología
2.
Annu Rev Cell Dev Biol ; 39: 175-196, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37418775

RESUMEN

The neural retina, at the back of the eye, is a fascinating system to use to discover how cells form tissues in the context of the developing nervous system. The retina is the tissue responsible for perception and transmission of visual information from the environment. It consists of five types of neurons and one type of glia cells that are arranged in a highly organized, layered structure to assure visual information flow. To reach this highly ordered arrangement, intricate morphogenic movements are occurring at the cell and tissue levels. I here discuss recent advances made to understand retinal development, from optic cup formation to neuronal layering. It becomes clear that these complex morphogenetic processes must be studied by taking the cellular as well as the tissue-wide aspects into account. The loop has to be closed between exploring how cell behavior influences tissue development and how the surrounding tissue itself influences single cells. Furthermore, it was recently revealed that the retina is a great system to study neuronal migration phenomena, and more is yet to be discovered in this aspect. Constantly developing imaging and image analysis toolboxes as well as the use of machine learning and synthetic biology make the retina the perfect system to explore more of its exciting neurodevelopmental biology.

3.
EMBO J ; 42(14): e112657, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37184124

RESUMEN

Correct nervous system development depends on the timely differentiation of progenitor cells into neurons. While the output of progenitor differentiation is well investigated at the population and clonal level, how stereotypic or variable fate decisions are during development is still more elusive. To fill this gap, we here follow the fate outcome of single neurogenic progenitors in the zebrafish retina over time using live imaging. We find that neurogenic progenitor divisions produce two daughter cells, one of deterministic and one of probabilistic fate. Interference with the deterministic branch of the lineage affects lineage progression. In contrast, interference with fate probabilities of the probabilistic branch results in a broader range of fate possibilities than in wild-type and involves the production of any neuronal cell type even at non-canonical developmental stages. Combining the interference data with stochastic modelling of fate probabilities revealed that a simple gene regulatory network is able to predict the observed fate decision probabilities during wild-type development. These findings unveil unexpected lineage flexibility that could ensure robust development of the retina and other tissues.


Asunto(s)
Retina , Pez Cebra , Animales , Pez Cebra/genética , Retina/metabolismo , Diferenciación Celular/fisiología , Neurogénesis/fisiología , Células Madre/metabolismo , Linaje de la Célula
4.
Cell Rep ; 42(2): 112057, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36735532

RESUMEN

Iron recycling prevents the development of anemia under homeostatic conditions. Whether iron recycling was co-opted as a defense strategy to prevent the development of anemia in response to infection is unclear. We find that in severe Plasmodium falciparum malaria, the onset of life-threatening anemia is associated with acute kidney injury (AKI), irrespective of parasite load. Using a well-established experimental rodent model of malaria anemia, we identify a transcriptional response that endows renal proximal tubule epithelial cells (RPTECs) with the capacity to store and recycle iron during P. chabaudi chabaudi (Pcc) infection. This response encompasses the induction of ferroportin 1/SLC40A1, which exports iron from RPTECs and counteracts AKI while supporting compensatory erythropoiesis and preventing the onset of life-threatening malarial anemia. Iron recycling by myeloid cells is dispensable to this protective response, suggesting that RPTECs provide an iron-recycling salvage pathway that prevents the pathogenesis of life-threatening malarial anemia.


Asunto(s)
Lesión Renal Aguda , Anemia , Malaria Falciparum , Malaria , Humanos , Anemia/etiología , Malaria/complicaciones , Malaria/parasitología , Eritropoyesis/fisiología , Malaria Falciparum/complicaciones , Hierro
5.
Curr Biol ; 32(22): 4817-4831.e9, 2022 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-36208624

RESUMEN

Cell migration is crucial for organismal development and shapes organisms in health and disease. Although a lot of research has revealed the role of intracellular components and extracellular signaling in driving single and collective cell migration, the influence of physical properties of the tissue and the environment on migration phenomena in vivo remains less explored. In particular, the role of the extracellular matrix (ECM), which many cells move upon, is currently unclear. To overcome this gap, we use zebrafish optic cup formation, and by combining novel transgenic lines and image analysis pipelines, we study how ECM properties influence cell migration in vivo. We show that collectively migrating rim cells actively move over an immobile extracellular matrix. These cell movements require cryptic lamellipodia that are extended in the direction of migration. Quantitative analysis of matrix properties revealed that the topology of the matrix changes along the migration path. These changes in matrix topologies are accompanied by changes in the dynamics of cell-matrix interactions. Experiments and theoretical modeling suggest that matrix porosity could be linked to efficient migration. Indeed, interfering with matrix topology by increasing its porosity results in a loss of cryptic lamellipodia, less-directed cell-matrix interactions, and overall inefficient migration. Thus, matrix topology is linked to the dynamics of cell-matrix interactions and the efficiency of directed collective rim cell migration during vertebrate optic cup morphogenesis.


Asunto(s)
Comunicación Celular , Pez Cebra , Animales , Morfogénesis , Movimiento Celular , Matriz Extracelular/metabolismo
6.
Elife ; 112022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35727138

RESUMEN

Despite decades of research, knowledge about the genes that are important for development and function of the mammalian eye and are involved in human eye disorders remains incomplete. During mammalian evolution, mammals that naturally exhibit poor vision or regressive eye phenotypes have independently lost many eye-related genes. This provides an opportunity to predict novel eye-related genes based on specific evolutionary gene loss signatures. Building on these observations, we performed a genome-wide screen across 49 mammals for functionally uncharacterized genes that are preferentially lost in species exhibiting lower visual acuity values. The screen uncovered several genes, including SERPINE3, a putative serine proteinase inhibitor. A detailed investigation of 381 additional mammals revealed that SERPINE3 is independently lost in 18 lineages that typically do not primarily rely on vision, predicting a vision-related function for this gene. To test this, we show that SERPINE3 has the highest expression in eyes of zebrafish and mouse. In the zebrafish retina, serpine3 is expressed in Müller glia cells, a cell type essential for survival and maintenance of the retina. A CRISPR-mediated knockout of serpine3 in zebrafish resulted in alterations in eye shape and defects in retinal layering. Furthermore, two human polymorphisms that are in linkage with SERPINE3 are associated with eye-related traits. Together, these results suggest that SERPINE3 has a role in vertebrate eyes. More generally, by integrating comparative genomics with experiments in model organisms, we show that screens for specific phenotype-associated gene signatures can predict functions of uncharacterized genes.


Asunto(s)
Proteínas del Ojo , Visión Ocular , Animales , Ceguera/genética , Ceguera/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/metabolismo , Genoma , Humanos , Mamíferos/genética , Mamíferos/metabolismo , Ratones/genética , Ratones/metabolismo , Retina/metabolismo , Trastornos de la Visión/genética , Trastornos de la Visión/metabolismo , Visión Ocular/genética , Visión Ocular/fisiología , Pez Cebra/genética , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
7.
Elife ; 112022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35639083

RESUMEN

Migration of cells in the developing brain is integral for the establishment of neural circuits and function of the central nervous system. While migration modes during which neurons employ predetermined directional guidance of either preexisting neuronal processes or underlying cells have been well explored, less is known about how cells featuring multipolar morphology migrate in the dense environment of the developing brain. To address this, we here investigated multipolar migration of horizontal cells in the zebrafish retina. We found that these cells feature several hallmarks of amoeboid-like migration that enable them to tailor their movements to the spatial constraints of the crowded retina. These hallmarks include cell and nuclear shape changes, as well as persistent rearward polarization of stable F-actin. Interference with the organization of the developing retina by changing nuclear properties or overall tissue architecture hampers efficient horizontal cell migration and layer formation showing that cell-tissue interplay is crucial for this process. In view of the high proportion of multipolar migration phenomena observed in brain development, the here uncovered amoeboid-like migration mode might be conserved in other areas of the developing nervous system.


Asunto(s)
Amoeba , Pez Cebra , Animales , Movimiento Celular/fisiología , Neuronas/fisiología , Retina
8.
Dev Cell ; 57(5): 598-609.e5, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35245444

RESUMEN

Organ morphogenesis involves dynamic changes of tissue properties while cells adapt to their mechanical environment through mechanosensitive pathways. How mechanical cues influence cell behaviors during morphogenesis remains unclear. Here, we studied the formation of the zebrafish atrioventricular canal (AVC) where cardiac valves develop. We show that the AVC forms within a zone of tissue convergence associated with the increased activation of the actomyosin meshwork and cell-orientation changes. We demonstrate that tissue convergence occurs with a reduction of cell volume triggered by mechanical forces and the mechanosensitive channel TRPP2/TRPV4. Finally, we show that the extracellular matrix component hyaluronic acid controls cell volume changes. Together, our data suggest that multiple force-sensitive signaling pathways converge to modulate cell volume. We conclude that cell volume reduction is a key cellular feature activated by mechanotransduction during cardiovascular morphogenesis. This work further identifies how mechanical forces and extracellular matrix influence tissue remodeling in developing organs.


Asunto(s)
Proteínas de Pez Cebra , Pez Cebra , Animales , Tamaño de la Célula , Válvulas Cardíacas/metabolismo , Mecanotransducción Celular , Morfogénesis , Canales Catiónicos TRPV/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
9.
Semin Cell Dev Biol ; 120: 85-93, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34030949

RESUMEN

The extracellular matrix is involved in facilitating morphogenesis during development in many contexts. Its role as a stable structure that supports, constrains and acts a substrate for migrating cells in developing tissues is well known and explored. However, recent studies that image fluorescently tagged matrix proteins in developing embryos and tissues, show more dynamic characteristics of matrices in diverse developmental contexts. In this review, we discuss new insights revealed by live-imaging of matrix proteins that help with the understanding of the dynamics of matrix deposition, degradation, turnover and rearrangement. Further, we discuss the mechanisms by which matrix dynamics can influence morphogenesis during development. We present our view on how the field can move in the future and what live-imaging approaches in diverse model organisms can contribute to this exciting area of developmental biology.


Asunto(s)
Matriz Extracelular/metabolismo , Morfogénesis/fisiología , Animales , Drosophila
10.
Elife ; 92020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33141024

RESUMEN

During brain development, progenitor cells need to balanceproliferation and differentiation in order to generate different neurons in the correct numbers and proportions. Currently, the patterns of multipotent progenitor divisions that lead to neurogenic entry and the factors that regulate them are not fully understood. We here use the zebrafish retina to address this gap, exploiting its suitability for quantitative live-imaging. We show that early neurogenic progenitors arise from asymmetric divisions. Notch regulates this asymmetry, as when inhibited, symmetric divisions producing two neurogenic progenitors occur. Surprisingly however, Notch does not act through an apicobasal activity gradient as previously suggested, but through asymmetric inheritance of Sara-positive endosomes. Further, the resulting neurogenic progenitors show cell biological features different from multipotent progenitors, raising the possibility that an intermediate progenitor state exists in the retina. Our study thus reveals new insights into the regulation of proliferative and differentiative events during central nervous system development.


Asunto(s)
Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Receptores Notch/antagonistas & inhibidores , Neuronas Retinianas/fisiología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Animales Modificados Genéticamente , Azepinas/farmacología , Proliferación Celular/efectos de los fármacos , Diaminas/farmacología , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Microscopía Confocal/métodos , Receptores Notch/metabolismo , Tiazoles/farmacología , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
11.
Development ; 147(14)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669276

RESUMEN

During development, cells need to make decisions about their fate in order to ensure that the correct numbers and types of cells are established at the correct time and place in the embryo. Such cell fate decisions are often classified as deterministic or stochastic. However, although these terms are clearly defined in a mathematical sense, they are sometimes used ambiguously in biological contexts. Here, we provide some suggestions on how to clarify the definitions and usage of the terms stochastic and deterministic in biological experiments. We discuss the frameworks within which such clear definitions make sense and highlight when certain ambiguity prevails. As an example, we examine how these terms are used in studies of neuronal cell fate decisions and point out areas in which definitions and interpretations have changed and matured over time. We hope that this Review will provide some clarification and inspire discussion on the use of terminology in relation to fate decisions.


Asunto(s)
Sistema Nervioso Central/metabolismo , Modelos Biológicos , Animales , Diferenciación Celular , Linaje de la Célula , Neocórtex/citología , Neocórtex/metabolismo , Neuronas/citología , Neuronas/metabolismo , Procesos Estocásticos , Cigoto/citología , Cigoto/metabolismo
12.
Development ; 146(16)2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31405994

RESUMEN

Retinal ganglion cell (RGC) degeneration is a hallmark of glaucoma, the most prevalent cause of irreversible blindness. Thus, therapeutic strategies are needed to protect and replace these projection neurons. One innovative approach is to promote de novo genesis of RGCs via manipulation of endogenous cell sources. Here, we demonstrate that the pluripotency regulator gene Krüppel-like factor 4 (Klf4) is sufficient to change the potency of lineage-restricted retinal progenitor cells to generate RGCs in vivo Transcriptome analysis disclosed that the overexpression of Klf4 induces crucial regulators of RGC competence and specification, including Atoh7 and Eya2 In contrast, loss-of-function studies in mice and zebrafish demonstrated that Klf4 is not essential for generation or differentiation of RGCs during retinogenesis. Nevertheless, induced RGCs (iRGCs) generated upon Klf4 overexpression migrate to the proper layer and project axons aligned with endogenous fascicles that reach the optic nerve head. Notably, iRGCs survive for up to 30 days after in vivo generation. We identified Klf4 as a promising candidate for reprogramming retinal cells and regenerating RGCs in the retina.This article has an associated 'The people behind the papers' interview.


Asunto(s)
Factores de Transcripción de Tipo Kruppel/fisiología , Neurogénesis , Células Ganglionares de la Retina/fisiología , Animales , Ciclo Celular , Femenino , Proteínas de Homeodominio/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Regeneración Nerviosa , Células-Madre Neurales/fisiología , Ratas , Factor de Transcripción Brn-3A/metabolismo , Factor de Transcripción Brn-3B/metabolismo , Pez Cebra , Proteínas de Pez Cebra/fisiología
13.
Curr Opin Genet Dev ; 57: 54-60, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31430686

RESUMEN

Collective cell migration plays essential roles in embryogenesis and also contributes to disease states. Recent years have seen immense progress in understanding mechanisms and overarching concepts of collective cell migration. Self-organization of moving groups emerges as an important common feature. This includes self-generating gradients, internal chemotaxis or mechanotaxis and contact-dependent polarization within migrating cell groups. Here, we will discuss these concepts and their applications to classical models of collective cell migration. Further, we discuss new models and paradigms of collective cell migration and elaborate on open questions and future challenges. Answering these questions will help to expand our appreciation of this exciting theme in developmental cell biology and contribute to the understanding of disease states.


Asunto(s)
Movimiento Celular/genética , Polaridad Celular/genética , Desarrollo Embrionario/genética , Animales , Quimiotaxis/genética , Biología Evolutiva/tendencias , Humanos
14.
J Cell Biol ; 218(10): 3272-3289, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31420451

RESUMEN

Correct nuclear position is crucial for cellular function and tissue development. Depending on cell context, however, the cytoskeletal elements responsible for nuclear positioning vary. While these cytoskeletal mechanisms have been intensely studied in single cells, how nuclear positioning is linked to tissue morphology is less clear. Here, we compare apical nuclear positioning in zebrafish neuroepithelia. We find that kinetics and actin-dependent mechanisms of nuclear positioning vary in tissues of different morphology. In straight neuroepithelia, nuclear positioning is controlled by Rho-ROCK-dependent myosin contractility. In contrast, in basally constricted neuroepithelia, a novel formin-dependent pushing mechanism is found for which we propose a proof-of-principle force generation theory. Overall, our data suggest that correct nuclear positioning is ensured by the adaptability of the cytoskeleton to cell and tissue shape. This in turn leads to robust epithelial maturation across geometries. The conclusion that different nuclear positioning mechanisms are favored in tissues of different morphology highlights the importance of developmental context for the execution of intracellular processes.


Asunto(s)
Actinas/metabolismo , Movimiento Celular , Núcleo Celular/metabolismo , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Animales , Ratas , Pez Cebra
15.
Development ; 146(14)2019 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-31273051

RESUMEN

Cells perceive their microenvironment through chemical and physical cues. However, how the mechanical signals are interpreted during embryonic tissue deformation to result in specific cell behaviors is largely unknown. The Yap/Taz family of transcriptional co-activators has emerged as an important regulator of tissue growth and regeneration, responding to physical cues from the extracellular matrix, and to cell shape and actomyosin cytoskeletal changes. In this study, we demonstrate the role of Yap/Taz-TEAD activity as a sensor of mechanical signals in the regulation of the progenitor behavior of boundary cells during zebrafish hindbrain compartmentalization. Monitoring of in vivo Yap/Taz activity during hindbrain segmentation indicated that boundary cells responded to mechanical cues in a cell-autonomous manner through Yap/Taz-TEAD activity. Cell-lineage analysis revealed that Yap/Taz-TEAD boundary cells decreased their proliferative activity when Yap/Taz-TEAD activity ceased, which preceded changes in their cell fate from proliferating progenitors to differentiated neurons. Functional experiments demonstrated the pivotal role of Yap/Taz-TEAD signaling in maintaining progenitor features in the hindbrain boundary cell population.


Asunto(s)
División Celular/genética , Proteínas de Unión al ADN/fisiología , Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Nucleares/fisiología , Rombencéfalo/citología , Rombencéfalo/embriología , Células Madre/fisiología , Transactivadores/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Embrión no Mamífero , Péptidos y Proteínas de Señalización Intracelular/genética , Fenómenos Mecánicos , Mecanotransducción Celular/genética , Mecanotransducción Celular/fisiología , Neurogénesis/genética , Proteínas Nucleares/genética , Organogénesis/genética , Rombencéfalo/metabolismo , Transducción de Señal/genética , Células Madre/citología , Factores de Transcripción de Dominio TEA , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
Development ; 146(12)2019 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-31126979

RESUMEN

Developmental programs that arrange cells and tissues into patterned organs are remarkably robust. In the developing vertebrate retina, for example, neurons reproducibly assemble into distinct layers giving the mature organ its overall structured appearance. This stereotypic neuronal arrangement, termed lamination, is important for efficient neuronal connectivity. Although retinal lamination is conserved in many vertebrates, including humans, how it emerges from single cell behaviour is not fully understood. To shed light on this issue, we here investigated the formation of the retinal horizontal cell layer. Using in vivo light sheet imaging of the developing zebrafish retina, we generated a comprehensive quantitative analysis of horizontal single cell behaviour from birth to final positioning. Interestingly, we find that all parameters analysed, including cell cycle dynamics, migration paths and kinetics, as well as sister cell dispersal, are very heterogeneous. Thus, horizontal cells show individual non-stereotypic behaviour before final positioning. Yet these initially variable cell dynamics always generate the correct laminar pattern. Consequently, our data show that the extent of single cell stochasticity in the lamination of the vertebrate retina is underexplored.


Asunto(s)
Movimiento Celular , Neuronas/citología , Retina/embriología , Pez Cebra/embriología , Animales , Blastómeros/citología , Ciclo Celular , Linaje de la Célula , Procesamiento de Imagen Asistido por Computador , Cinética , Ratones , Mitosis , Análisis de la Célula Individual , Huso Acromático , Procesos Estocásticos
17.
Nat Methods ; 15(12): 1090-1097, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30478326

RESUMEN

Fluorescence microscopy is a key driver of discoveries in the life sciences, with observable phenomena being limited by the optics of the microscope, the chemistry of the fluorophores, and the maximum photon exposure tolerated by the sample. These limits necessitate trade-offs between imaging speed, spatial resolution, light exposure, and imaging depth. In this work we show how content-aware image restoration based on deep learning extends the range of biological phenomena observable by microscopy. We demonstrate on eight concrete examples how microscopy images can be restored even if 60-fold fewer photons are used during acquisition, how near isotropic resolution can be achieved with up to tenfold under-sampling along the axial direction, and how tubular and granular structures smaller than the diffraction limit can be resolved at 20-times-higher frame rates compared to state-of-the-art methods. All developed image restoration methods are freely available as open source software in Python, FIJI, and KNIME.


Asunto(s)
Colorantes Fluorescentes/química , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Fluorescente/métodos , Programas Informáticos , Animales , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Células HeLa , Humanos , Hígado/metabolismo , Hígado/ultraestructura , Fotones , Planarias/metabolismo , Planarias/ultraestructura , Retina/metabolismo , Retina/ultraestructura , Tribolium/metabolismo , Tribolium/ultraestructura , Pez Cebra/metabolismo
18.
PLoS Biol ; 16(8): e2006018, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30096143

RESUMEN

Tissue shape is often established early in development and needs to be scaled isotropically during growth. However, the cellular contributors and ways by which cells interact tissue-wide to enable coordinated isotropic tissue scaling are not yet understood. Here, we follow cell and tissue shape changes in the zebrafish retinal neuroepithelium, which forms a cup with a smooth surface early in development and maintains this architecture as it grows. By combining 3D analysis and theory, we show how a global increase in cell height can maintain tissue shape during growth. Timely cell height increase occurs concurrently with a non-cell-autonomous actin redistribution. Blocking actin redistribution and cell height increase perturbs isotropic scaling and leads to disturbed, folded tissue shape. Taken together, our data show how global changes in cell shape enable isotropic growth of the developing retinal neuroepithelium, a concept that could also apply to other systems.


Asunto(s)
Retina/citología , Retina/crecimiento & desarrollo , Actinas/fisiología , Animales , Procesos de Crecimiento Celular/fisiología , Movimiento Celular , Forma de la Célula/fisiología , Morfogénesis , Pez Cebra , Proteínas de Pez Cebra
19.
Nat Commun ; 9(1): 3297, 2018 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-30120238

RESUMEN

The conditional and reversible depletion of proteins by auxin-mediated degradation is a powerful tool to investigate protein functions in cells and whole organisms. However, its wider applications require fusing the auxin-inducible degron (AID) to individual target proteins. Thus, establishing the auxin system for multiple proteins can be challenging. Another approach for directed protein degradation are anti-GFP nanobodies, which can be applied to GFP stock collections that are readily available in different experimental models. Here, we combine the advantages of auxin and nanobody-based degradation technologies creating an AID-nanobody to degrade GFP-tagged proteins at different cellular structures in a conditional and reversible manner in human cells. We demonstrate efficient and reversible inactivation of the anaphase promoting complex/cyclosome (APC/C) and thus provide new means to study the functions of this essential ubiquitin E3 ligase. Further, we establish auxin degradation in a vertebrate model organism by employing AID-nanobodies in zebrafish.


Asunto(s)
Proteínas Fluorescentes Verdes/metabolismo , Ácidos Indolacéticos/metabolismo , Proteolisis , Anticuerpos de Dominio Único/metabolismo , Ciclosoma-Complejo Promotor de la Anafase/metabolismo , Animales , Compartimento Celular , Células HeLa , Humanos , Cinética , Lisina/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Pez Cebra/metabolismo
20.
Methods Cell Biol ; 145: 107-127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29957200

RESUMEN

Tissue growth and organismal development require orchestrated cell proliferation. To understand how cell division guides development, it is important to explore mitosis at the tissue-wide, cellular, and subcellular scale. At the tissue level this includes determining a tissue's mitotic index, at the cellular level the tracing of cell lineages, and at the subcellular level the characterization of intracellular components. These different tasks can be addressed by different imaging approaches (e.g., laser-scanning confocal, spinning disk confocal, and light-sheet fluorescence microscopy). Here, we summarize three protocols for exploring different facets of mitosis in developing zebrafish embryos. Zebrafish embryos are transparent and their rapid external development greatly facilitates the study of cellular processes and developmental dynamics using microscopy. A critical step in all imaging studies of mitosis in development is to choose the most suitable microscope for each scientific question. This choice is important in order to ensure a balance between the required temporal and spatial resolution and minimal phototoxicity that could otherwise perturb the process of interest. The use of different microscopy techniques, best suited for the purpose of each experiment, thus permits to generate a comprehensive and unbiased view on how mitosis influences development.


Asunto(s)
Desarrollo Embrionario/fisiología , Mitosis/fisiología , Pez Cebra/fisiología , Animales , Linaje de la Célula/fisiología , Rayos Láser , Microscopía Confocal/métodos , Microscopía Fluorescente/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA