Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Cortex ; 177: 180-193, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38865762

RESUMEN

Understanding the neural substrate of altered conscious states is an important cultural, scientific, and clinical endeavour. Although hypnosis causes strong shifts in conscious perception and cognition, it remains largely unclear how hypnosis affects information processing in cortical networks. Here we manipulated the depth of hypnotic states to study information processing between cortical regions involved in attention and awareness. We used high-density Electroencephalography (EEG) to record resting-state cortical activity from 30 hypnosis experts during two hypnotic states with different depth. Each participant entered a light and a deep hypnotic state as well as two well-matched control states. Bridging top-down and lateralisation models of hypnosis, we found that interhemispheric frontoparietal connectivity distinguished hypnosis and control conditions, while no difference was found between the two hypnotic states. Using a graph-theoretic measure, we revealed that the amount of information passing through individual nodes (measured via betweenness centrality) is reduced during hypnosis relative to control states. Finally, we found that theta power was enhanced during hypnosis. Our result contributes to the current discussion around a role for theta power in bringing about hypnotic states, as well as other altered conscious states. Overall, our findings support the notion that altered top-down control in frontoparietal regions facilitates hypnosis by integrating information between cortical hemispheres.

2.
PLoS One ; 19(5): e0303209, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38768146

RESUMEN

Mental health issues are markedly increased in individuals with autism, making it the number one research priority by stakeholders. There is a crucial need to use personalized approaches to understand the underpinnings of mental illness in autism and consequently, to address individual needs. Based on the risk factors identified in typical mental research, we propose the following themes central to mental health issues in autism: sleep difficulties and stress. Indeed, the prevalence of manifold circadian disruptions and sleep difficulties in autism, alongside stress related to sensory overload, forms an integral part of autistic symptomatology. This proof-of-concept study protocol outlines an innovative, individualised approach towards investigating the interrelationships between stress indices, sleep and circadian activation patterns, and sensory sensitivity in autism. Embracing an individualized methodology, we aim to collect 14 days of data per participant from 20 individuals with autism diagnoses and 20 without. Participants' sleep will be monitored using wearable EEG headbands and a sleep diary. Diurnal tracking of heart rate and electrodermal activity through wearables will serve as proxies of stress. Those objective data will be synchronized with subjective experience traces collected throughout the day using the Temporal Experience Tracing (TET) method. TET facilitates the quantification of relevant aspects of individual experience states, such as stress or sensory sensitivities, by providing a continuous multidimensional description of subjective experiences. Capturing the dynamics of subjective experiences phase-locked to neural and physiological proxies both between and within individuals, this approach has the potential to contribute to our understanding of critical issues in autism, including sleep problems, sensory reactivity and stress. The planned strives to provide a pathway towards developing a more nuanced and individualized approach to addressing mental health in autism.


Asunto(s)
Trastorno Autístico , Ritmo Circadiano , Estrés Psicológico , Humanos , Trastorno Autístico/fisiopatología , Trastorno Autístico/psicología , Ritmo Circadiano/fisiología , Estrés Psicológico/fisiopatología , Calidad del Sueño , Masculino , Femenino , Adulto , Adolescente , Sueño/fisiología , Frecuencia Cardíaca/fisiología , Adulto Joven , Electroencefalografía
3.
Emotion ; 24(1): 177-195, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37347885

RESUMEN

Despite a surge of studies on the effects of COVID-19 on our well-being, we know little about how the pandemic is reflected in people's spontaneous thoughts and experiences, such as mind-wandering (or daydreaming) during wakefulness and dreaming during sleep. We investigated whether and how COVID-19-related general concern, anxiety, and daily worry are associated with the daily fluctuation of the affective quality of mind-wandering and dreaming, and to what extent these associations can be explained by poor sleep quality. We used ecological momentary assessment by asking participants to rate the affect they experienced during mind-wandering and dreaming in daily logs over a 2-week period. Our preregistered analyses based on 1,755 dream logs from 172 individuals and 1,496 mind-wandering logs from 152 individuals showed that, on days when people reported higher levels of negative affect and lower levels of positive affect during mind-wandering, they experienced more worry. Only daily sleep quality was associated with affect experienced during dreaming at the within-person level: on nights with poorer sleep quality people reported experiencing more negative and less positive affect in dreams and were more likely to experience nightmares. However, at the between-person level, individuals who experienced more daily COVID-19 worry during the study period also reported experiencing more negative affect during mind-wandering and during dreaming. As such, the continuity between daily and nightly experiences seems to rely more on stable trait-like individual differences in affective processing. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
COVID-19 , Humanos , Sueño , Ansiedad , Evaluación Ecológica Momentánea , Trastornos de Ansiedad
4.
Eur J Neurosci ; 56(9): 5615-5636, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35799324

RESUMEN

Down's syndrome is associated with pathological ageing and a propensity for early-onset Alzheimer's disease. The early symptoms of dementia in people with Down's syndrome may reflect frontal lobe vulnerability to amyloid deposition. Auditory predictive processes rely on the bilateral auditory cortices with the recruitment of frontal cortices and appear to be impaired in pathologies characterized by compromised frontal lobe. Hence, auditory predictive processes were investigated to assess Down's syndrome pathology and its relationship with pathological ageing. An auditory electroencephalography (EEG) global-local paradigm was presented to the participants, in which oddball stimuli could either violate local or higher level global rules. We characterised predictive processes in individuals with Down's syndrome and their relationship with pathological ageing, with a focus on the EEG event-related potential called Mismatch Negativity (MMN) and the P300. In Down's syndrome, we also evaluated the EEG components as predictor of cognitive decline 1 year later. We found that predictive processes of detection of auditory violations are overall preserved in Down's syndrome but also that the amplitude of the MMN to local deviancies decreases with age. However, the 1-year follow-up of Down's syndrome found that none of the ERPs measures predicted subsequent cognitive decline. The present study provides a novel characterization of electrophysiological markers of local and global predictive processes in Down's syndrome.


Asunto(s)
Enfermedad de Alzheimer , Síndrome de Down , Adulto , Humanos , Síndrome de Down/diagnóstico , Síndrome de Down/patología , Síndrome de Down/psicología , Envejecimiento , Electroencefalografía
5.
Behav Res Methods ; 54(1): 457-474, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34244985

RESUMEN

While religious beliefs are typically studied using questionnaires, there are no standardized tools available for cognitive psychology and neuroscience studies of religious cognition. Here we present the first such tool-the Cambridge Psycholinguistic Inventory of Christian Beliefs (CPICB)-which consists of audio-recorded items of religious beliefs as well as items of three control conditions: moral beliefs, abstract scientific knowledge and empirical everyday life knowledge. The CPICB is designed in such a way that the ultimate meaning of each sentence is revealed only by its final critical word, which enables the precise measurement of reaction times and/or latencies of neurophysiological responses. Each statement comes in a pair of Agree/Disagree versions of critical words, which allows for experimental contrasting between belief and disbelief conditions. Psycholinguistic and psychoacoustic matching between Agree/Disagree versions of sentences, as well as across different categories of the CPICB items (Religious, Moral, Scientific, Everyday), enables rigorous control of low-level psycholinguistic and psychoacoustic features while testing higher-level beliefs. In the exploratory Study 1 (N = 20), we developed and tested a preliminary version of the CPICB that had 480 items. After selecting 400 items that yielded the most consistent responses, we carried out a confirmatory test-retest Study 2 (N = 40). Preregistered data analyses confirmed excellent construct validity, internal consistency and test-retest reliability of the CPICB religious belief statements. We conclude that the CPICB is suitable for studying Christian beliefs in an experimental setting involving behavioural and neuroimaging paradigms, and provide Open Access to the inventory items, fostering further development of the experimental research of religiosity.


Asunto(s)
Principios Morales , Psicolingüística , Humanos , Psicometría , Reproducibilidad de los Resultados , Encuestas y Cuestionarios
6.
J Neurosci ; 41(45): 9374-9391, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34645605

RESUMEN

Detection of statistical irregularities, measured as a prediction error response, is fundamental to the perceptual monitoring of the environment. We studied whether prediction error response is associated with neural oscillations or asynchronous broadband activity. Electrocorticography was conducted in three male monkeys, who passively listened to the auditory roving oddball stimuli. Local field potentials (LFPs) recorded over the auditory cortex underwent spectral principal component analysis, which decoupled broadband and rhythmic components of the LFP signal. We found that the broadband component captured the prediction error response, whereas none of the rhythmic components were associated with statistical irregularities of sounds. The broadband component displayed more stochastic, asymmetrical multifractal properties than the rhythmic components, which revealed more self-similar dynamics. We thus conclude that the prediction error response is captured by neuronal populations generating asynchronous broadband activity, defined by irregular dynamic states, which, unlike oscillatory rhythms, appear to enable the neural representation of auditory prediction error response.SIGNIFICANCE STATEMENT This study aimed to examine the contribution of oscillatory and asynchronous components of auditory local field potentials in the generation of prediction error responses to sensory irregularities, as this has not been directly addressed in the previous studies. Here, we show that mismatch negativity-an auditory prediction error response-is driven by the asynchronous broadband component of potentials recorded in the auditory cortex. This finding highlights the importance of nonoscillatory neural processes in the predictive monitoring of the environment. At a more general level, the study demonstrates that stochastic neural processes, which are often disregarded as neural noise, do have a functional role in the processing of sensory information.


Asunto(s)
Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Modelos Neurológicos , Estimulación Acústica/métodos , Animales , Callithrix , Electrocorticografía/métodos , Masculino
8.
Sci Rep ; 11(1): 2401, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504828

RESUMEN

Mental imagery is the process through which we retrieve and recombine information from our memory to elicit the subjective impression of "seeing with the mind's eye". In the social domain, we imagine other individuals while recalling our encounters with them or modelling alternative social interactions in future. Many studies using imaging and neurophysiological techniques have shown several similarities in brain activity between visual imagery and visual perception, and have identified frontoparietal, occipital and temporal neural components of visual imagery. However, the neural connectivity between these regions during visual imagery of socially relevant stimuli has not been studied. Here we used electroencephalography to investigate neural connectivity and its dynamics between frontal, parietal, occipital and temporal electrodes during visual imagery of faces. We found that voluntary visual imagery of faces is associated with long-range phase synchronisation in the gamma frequency range between frontoparietal electrode pairs and between occipitoparietal electrode pairs. In contrast, no effect of imagery was observed in the connectivity between occipitotemporal electrode pairs. Gamma range synchronisation between occipitoparietal electrode pairs predicted subjective ratings of the contour definition of imagined faces. Furthermore, we found that visual imagery of faces is associated with an increase of short-range frontal synchronisation in the theta frequency range, which temporally preceded the long-range increase in the gamma synchronisation. We speculate that the local frontal synchrony in the theta frequency range might be associated with an effortful top-down mnemonic reactivation of faces. In contrast, the long-range connectivity in the gamma frequency range along the fronto-parieto-occipital axis might be related to the endogenous binding and subjective clarity of facial visual features.


Asunto(s)
Cara , Recuerdo Mental , Percepción Visual , Adulto , Algoritmos , Electroencefalografía , Femenino , Humanos , Masculino , Modelos Teóricos , Estimulación Luminosa , Tiempo de Reacción , Adulto Joven
9.
Eur Child Adolesc Psychiatry ; 30(1): 169-172, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31955249

RESUMEN

OBJECTIVES: Perceptual timing tasks are frequently applied in research on developmental disorders, but information on their reliability is lacking in pediatric studies. We therefore aimed to assess the reliability of the four paradigms most frequently used, i.e., time discrimination, time estimation, time production, and time reproduction. METHODS: Based on the data from our recent longitudinal study by Marx et al. (Front Hum Neurosci 11:122, 2017), we estimated the internal consistency and test-retest reliability of these tasks in children with ADHD and typically developing children. Individual thresholds were used as dependent measures for the time discrimination task, whereas absolute error and accuracy coefficient scores were used for the other three tasks. RESULTS: Although less commonly used, the time estimation paradigm was the most robust measure of perceptual timing in terms of internal consistency and test-retest reliability in both ADHD and typically developing children, whereas the most frequently used paradigms showed poor internal consistency (time reproduction) and poor test-retest reliability (time discrimination). Compared to the absolute errors, accuracy coefficients showed almost exclusively higher internal consistency and test-retest reliability. CONCLUSIONS: Our findings call for more frequent use of the time estimation paradigm in studies of perceptual timing in ADHD. The time reproduction paradigm should be re-considered, avoiding pooling of a wide range of time intervals (2-48 s). The accuracy coefficient score is the more reliable and the more intuitive dependent variable and should be preferred in future timing research. To increase the reliability of the timing measurement, each experimental session should be performed twice, if possible.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Percepción del Tiempo/fisiología , Adolescente , Niño , Femenino , Humanos , Estudios Longitudinales , Masculino , Reproducibilidad de los Resultados
10.
PLoS One ; 15(8): e0226122, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32853238

RESUMEN

Essential for successful interaction with the environment is the human capacity to resolve events in time. Typical event timing paradigms are judgements of simultaneity (SJ) and of temporal order (TOJ). It remains unclear whether SJ and TOJ are based on the same underlying mechanism and whether there are fixed thresholds for resolution. The current study employed four visual event timing task versions: horizontal and vertical SJ and TOJ. Binary responses were analysed using multilevel binary regression modelling. Modulatory effects of potential explanatory variables on event timing perception were investigated: (1) Individual factors (sex and age), (2) temporal factors (SOA, trial number, order of experiment, order of stimuli orientation, time of day) and (3) spatial factors (left or right stimulus first, top or bottom stimulus first, horizontal vs. vertical orientation). The current study directly compares for the first time, performance on SJ and TOJ tasks using the same paradigm and presents evidence that a variety of factors and their interactions selectively modulate event timing functions in humans, explaining the variance found in previous studies. We conclude that SJ and TOJ are partially independent functions, because they are modulated differently by individual and contextual variables.


Asunto(s)
Percepción del Tiempo/fisiología , Visión Ocular/fisiología , Percepción Visual/fisiología , Adulto , Percepción Auditiva/fisiología , Femenino , Humanos , Juicio/fisiología , Masculino , Orientación , Tiempo de Reacción/fisiología
11.
Neuroimage ; 223: 117305, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32861789

RESUMEN

Transcranial magnetic stimulation (TMS) has been widely used in human cognitive neuroscience to examine the causal role of distinct cortical areas in perceptual, cognitive and motor functions. However, it is widely acknowledged that the effects of focal cortical stimulation can vary substantially between participants and even from trial to trial within individuals. Recent work from resting state functional magnetic resonance imaging (fMRI) studies has suggested that spontaneous fluctuations in alertness over a testing session can modulate the neural dynamics of cortical processing, even when participants remain awake and responsive to the task at hand. Here we investigated the extent to which spontaneous fluctuations in alertness during wake-to-sleep transition can account for the variability in neurophysiological responses to TMS. We combined single-pulse TMS with neural recording via electroencephalography (EEG) to quantify changes in motor and cortical reactivity with fluctuating levels of alertness defined objectively on the basis of ongoing brain activity. We observed rapid, non-linear changes in TMS-evoked responses with decreasing levels of alertness, even while participants remained responsive in the behavioural task. Specifically, we found that the amplitude of motor evoked potentials peaked during periods of EEG flattening, whereas TMS-evoked potentials increased and remained stable during EEG flattening and the subsequent occurrence of theta ripples that indicate the onset of NREM stage 1 sleep. Our findings suggest a rapid and complex reorganization of active neural networks in response to spontaneous fluctuations of alertness over relatively short periods of behavioural testing during wake-to-sleep transition.


Asunto(s)
Nivel de Alerta/fisiología , Potenciales Evocados , Corteza Motora/fisiología , Estimulación Magnética Transcraneal , Adulto , Electroencefalografía , Electromiografía , Potenciales Evocados Motores , Femenino , Humanos , Masculino , Adulto Joven
12.
Neurosci Conscious ; 2020(1): niaa006, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32695475

RESUMEN

The Dream Catcher test defines the criteria for a genuine discovery of the neural constituents of phenomenal consciousness. Passing the test implies that some patterns of purely brain-based data directly correspond to the subjective features of phenomenal experience, which would help to bridge the explanatory gap between consciousness and brain. Here, we conducted the Dream Catcher test for the first time in a step-wise and simplified form, capturing its core idea. The Dream Catcher experiment involved a Data Team, which measured participants' brain activity during sleep and collected dream reports, and a blinded Analysis Team, which was challenged to predict, based solely on brain measurements, whether or not a participant had a dream experience. Using a serial-awakening paradigm, the Data Team prepared 54 1-min polysomnograms of non-rapid eye movement sleep-27 of dreamful sleep and 27 of dreamless sleep (three of each condition from each of the nine participants)-redacting from them all associated participant and dream information. The Analysis Team attempted to classify each recording as either dreamless or dreamful using an unsupervised machine learning classifier, based on hypothesis-driven, extracted features of electroencephalography (EEG) spectral power and electrode location. The procedure was repeated over five iterations with a gradual removal of blindness. At no level of blindness did the Analysis Team perform significantly better than chance, suggesting that EEG spectral power could not be utilized to detect signatures specific to phenomenal consciousness in these data. This study marks the first step towards realizing the Dream Catcher test in practice.

13.
Front Neurosci ; 14: 352, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410940

RESUMEN

Electroencephalography (EEG) is perhaps the most widely used brain-imaging technique for pediatric populations. However, EEG signals are prone to distortion by motion. Compared to adults, infants' motion is both more frequent and less stereotypical yet motion effects on the infant EEG signal are largely undocumented. Here, we present a systematic assessment of naturalistic motion effects on the infant EEG signal. EEG recordings were performed with 14 infants (12 analyzed) who passively watched movies whilst spontaneously producing periods of bodily movement and rest. Each infant produced an average of 38.3 s (SD = 14.7 s) of rest and 18.8 s (SD = 17.9 s) of single motion segments for the final analysis. Five types of infant motions were analyzed: Jaw movements, and Limb movements of the Hand, Arm, Foot, and Leg. Significant movement-related distortions of the EEG signal were detected using cluster-based permutation analysis. This analysis revealed that, relative to resting state, infants' Jaw and Arm movements produced significant increases in beta (∼15 Hz) power, particularly over peripheral sites. Jaw movements produced more anteriorly located effects than Arm movements, which were most pronounced over posterior parietal and occipital sites. The cluster analysis also revealed trends toward decreased power in the theta and alpha bands observed over central topographies for all motion types. However, given the very limited quantity of infant data in this study, caution is recommended in interpreting these findings before subsequent replications are conducted. Nonetheless, this work is an important first step to inform future development of methods for addressing EEG motion-related artifacts. This work also supports wider use of naturalistic paradigms in social and developmental neuroscience.

14.
Sci Rep ; 10(1): 6735, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32317714

RESUMEN

Recently, cortical correlates of specific dream contents have been reported, such as the activation of the sensorimotor cortex during dreamed hand clenching. Yet, despite a close resemblance of such activation patterns to those seen during the corresponding wakeful behaviour, the causal mechanisms underlying specific dream contents remain largely elusive. Here, we aimed to investigate the causal role of the sensorimotor cortex in generating movement and bodily sensations during REM sleep dreaming. Following bihemispheric transcranial direct current stimulation (tDCS) or sham stimulation, guided by functional mapping of the primary motor cortex, naive participants were awakened from REM sleep and responded to a questionnaire on bodily sensations in dreams. Electromyographic (EMG) and electroencephalographic (EEG) recordings were used to quantify physiological changes during the preceding REM period. We found that tDCS, compared to sham stimulation, significantly decreased reports of dream movement, especially of repetitive actions. Other types of bodily experiences, such as tactile or vestibular sensations, were not affected by tDCS, confirming the specificity of stimulation effects to movement sensations. In addition, tDCS reduced EEG interhemispheric coherence in parietal areas and affected the phasic EMG correlation between both arms. These findings show that a complex temporal reorganization of the motor network co-occurred with the reduction of dream movement, revealing a link between central and peripheral motor processes and movement sensations of the dream self. tDCS over the sensorimotor cortex interferes with dream movement during REM sleep, which is consistent with a causal contribution to dream experience and has broader implications for understanding the neural basis of self-experience in dreams.


Asunto(s)
Sueños/fisiología , Cinestesia/fisiología , Recuerdo Mental/fisiología , Corteza Sensoriomotora/fisiología , Sueño REM/fisiología , Adulto , Sueños/psicología , Electroencefalografía , Femenino , Humanos , Masculino , Polisomnografía , Percepción Espacial/fisiología , Técnicas Estereotáxicas , Encuestas y Cuestionarios , Percepción del Tacto/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Vigilia/fisiología
16.
Cereb Cortex ; 30(8): 4563-4580, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32219312

RESUMEN

At any given moment, we experience a perceptual scene as a single whole and yet we may distinguish a variety of objects within it. This phenomenon instantiates two properties of conscious perception: integration and differentiation. Integration is the property of experiencing a collection of objects as a unitary percept and differentiation is the property of experiencing these objects as distinct from each other. Here, we evaluated the neural information dynamics underlying integration and differentiation of perceptual contents during bistable perception. Participants listened to a sequence of tones (auditory bistable stimuli) experienced either as a single stream (perceptual integration) or as two parallel streams (perceptual differentiation) of sounds. We computed neurophysiological indices of information integration and information differentiation with electroencephalographic and intracranial recordings. When perceptual alternations were endogenously driven, the integrated percept was associated with an increase in neural information integration and a decrease in neural differentiation across frontoparietal regions, whereas the opposite pattern was observed for the differentiated percept. However, when perception was exogenously driven by a change in the sound stream (no bistability), neural oscillatory power distinguished between percepts but information measures did not. We demonstrate that perceptual integration and differentiation can be mapped to theoretically motivated neural information signatures, suggesting a direct relationship between phenomenology and neurophysiology.


Asunto(s)
Percepción Auditiva/fisiología , Encéfalo/fisiología , Estimulación Acústica , Electroencefalografía , Femenino , Humanos , Masculino , Adulto Joven
17.
Infant Behav Dev ; 58: 101393, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31830682

RESUMEN

The use of electroencephalography (EEG) to study infant brain development is a growing trend. In addition to classical longitudinal designs that study the development of neural, cognitive and behavioural functions, new areas of EEG application are emerging, such as novel social neuroscience paradigms using dual infant-adult EEG recordings. However, most of the experimental designs, analysis methods, as well as EEG hardware were originally developed for single-person adult research. When applied to study infant development, adult-based solutions often pose unique problems that may go unrecognised. Here, we identify 14 challenges that infant EEG researchers may encounter when designing new experiments, collecting data, and conducting data analysis. Challenges related to the experimental design are: (1) small sample size and data attrition, and (2) varying arousal in younger infants. Challenges related to data acquisition are: (3) determining the optimal location for reference and ground electrodes, (4) control of impedance when testing with the high-density sponge electrode nets, (5) poor fit of standard EEG caps to the varying infant head shapes, and (6) ensuring a high degree of temporal synchronisation between amplifiers and recording devices during dual-EEG acquisition. Challenges related to the analysis of longitudinal and social neuroscience datasets are: (7) developmental changes in head anatomy, (8) prevalence and diversity of infant myogenic artefacts, (9) a lack of stereotypical topography of eye movements needed for the ICA-based data cleaning, (10) and relatively high inter-individual variability of EEG responses in younger cohorts. Additional challenges for the analysis of dual EEG data are: (11) developmental shifts in canonical EEG rhythms and difficulties in differentiating true inter-personal synchrony from spurious synchrony due to (12) common intrinsic properties of the signal and (13) shared external perturbation. Finally, (14) there is a lack of test-retest reliability studies of infant EEG. We describe each of these challenges and suggest possible solutions. While we focus specifically on the social neuroscience and longitudinal research, many of the issues we raise are relevant for all fields of infant EEG research.


Asunto(s)
Desarrollo Infantil , Electroencefalografía/tendencias , Neurociencias/tendencias , Proyectos de Investigación/tendencias , Conducta Social , Adulto , Encéfalo/fisiología , Electroencefalografía/métodos , Femenino , Humanos , Lactante , Estudios Longitudinales , Masculino , Neurociencias/métodos , Reproducibilidad de los Resultados
18.
Neuroimage ; 207: 116341, 2020 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-31712166

RESUMEN

Emotional communication between parents and children is crucial during early life, yet little is known about its neural underpinnings. Here, we adopt a dual connectivity approach to assess how positive and negative emotions modulate the interpersonal neural network between infants and their mothers during naturalistic interaction. Fifteen mothers were asked to model positive and negative emotions toward pairs of objects during social interaction with their infants (mean age 10.3 months) whilst the neural activity of both mothers and infants was concurrently measured using dual electroencephalography (EEG). Intra-brain and inter-brain network connectivity in the 6-9 Hz range (i.e. infant Alpha band) during maternal expression of positive and negative emotions was computed using directed (partial directed coherence, PDC) and non-directed (phase-locking value, PLV) connectivity metrics. Graph theoretical measures were used to quantify differences in network topology as a function of emotional valence. We found that inter-brain network indices (Density, Strength and Divisibility) consistently revealed strong effects of emotional valence on the parent-child neural network. Parents and children showed stronger integration of their neural processes during maternal demonstrations of positive than negative emotions. Further, directed inter-brain metrics (PDC) indicated that mother to infant directional influences were stronger during the expression of positive than negative emotional states. These results suggest that the parent-infant inter-brain network is modulated by the emotional quality and tone of dyadic social interactions, and that inter-brain graph metrics may be successfully applied to examine these changes in parent-infant inter-brain network topology.


Asunto(s)
Encéfalo/fisiología , Emociones/fisiología , Red Nerviosa/fisiología , Padres/psicología , Electroencefalografía/métodos , Femenino , Humanos , Lactante , Masculino
19.
J Neurosci ; 39(24): 4775-4784, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-30988168

RESUMEN

Affective experiences are central not only to our waking life but also to rapid eye movement (REM) sleep dreams. Despite our increasing understanding of the neural correlates of dreaming, we know little about the neural correlates of dream affect. Frontal alpha asymmetry (FAA) is considered a marker of affective states and traits as well as affect regulation in the waking state. Here, we explored whether FAA during REM sleep and during evening resting wakefulness is related to affective experiences in REM sleep dreams. EEG recordings were obtained from 17 human participants (7 men) who spent 2 nights in the sleep laboratory. Participants were awakened 5 min after the onset of every REM stage after which they provided a dream report and rated their dream affect. Two-minute preawakening EEG segments were analyzed. Additionally, 8 min of evening presleep and morning postsleep EEG were recorded during resting wakefulness. Mean spectral power in the alpha band (8-13 Hz) and corresponding FAA were calculated over the frontal (F4-F3) sites. Results showed that FAA during REM sleep, and during evening resting wakefulness, predicted ratings of dream anger. This suggests that individuals with greater alpha power in the right frontal hemisphere may be less able to regulate (i.e., inhibit) strong affective states, such as anger, in dreams. Additionally, FAA was positively correlated across wakefulness and REM sleep. Together, these findings imply that FAA may serve as a neural correlate of affect regulation not only in the waking but also in the dreaming state.SIGNIFICANCE STATEMENT We experience emotions not only during wakefulness but also during dreaming. Despite our increasing understanding of the neural correlates of dreaming, we know little about the neural correlates of dream emotions. Here we used electroencephalography to explore how frontal alpha asymmetry (FAA)-the relative difference in alpha power between the right and left frontal cortical areas that is associated with emotional processing and emotion regulation in wakefulness-is related to dream emotions. We show that individuals with greater FAA (i.e., greater right-sided alpha power) during rapid eye movement sleep, and during evening wakefulness, experience more anger in dreams. FAA may thus reflect the ability to regulate emotions not only in the waking but also in the dreaming state.


Asunto(s)
Afecto/fisiología , Ritmo alfa/fisiología , Ira/fisiología , Sueños/fisiología , Sueños/psicología , Electroencefalografía , Corteza Prefrontal/fisiología , Sueño REM/fisiología , Vigilia/fisiología , Adulto , Atención/fisiología , Femenino , Humanos , Masculino , Polisomnografía , Adulto Joven
20.
Autism ; 23(5): 1133-1142, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30288989

RESUMEN

We examined the perception of an ambiguous squares stimulus evoking bistable perception in a sample of 31 individuals with autistic spectrum condition and 22 matched typical adults. The perception of the ambiguous figure was manipulated by adaptation to unambiguous figures and/or by placing the ambiguous figure into a context of unambiguous figures. This resulted in four conditions testing the independent and combined (congruent and incongruent) manipulations of adaptation (bottom-up) and spatial context (top-down) effects. The strength of perception, as measured by perception of the first reported orientation of the ambiguous stimulus, was affected comparably between groups. Nevertheless, the strength of perception, as measured by perceptual durations, was affected differently between groups: the perceptual effect was strongest for the autistic spectrum condition group when combined bottom-up and top-down conditions were congruent. In contrast, the strength of the perceptual effect in response to the same condition in the typical adults group was comparable to the adaptation, but stronger than both the context and the incongruent combined bottom-up and top-down conditions. Furthermore, the context condition was stronger than the incongruent combined bottom-up and top-down conditions for the typical adults group. Thus, our findings support the view of stimulus-specific top-down modulation in autistic spectrum condition.


Asunto(s)
Trastorno del Espectro Autista/fisiopatología , Percepción Visual/fisiología , Adulto , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estimulación Luminosa/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA