Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Sci Rep ; 14(1): 19656, 2024 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179604

RESUMEN

KRAS belongs to a family of small GTPases that act as binary switches upstream of several signalling cascades, controlling proliferation and survival of cells. Mutations in KRAS drive oncogenesis, especially in pancreatic, lung, and colorectal cancers (CRC). Although historic attempts at targeting mutant KRAS with small molecule inhibitors have proven challenging, there are recent successes with the G12C, and G12D mutations. However, clinically important RAS mutations such as G12V, G13D, Q61L, and A146T, remain elusive drug targets, and insights to their structural landscape is of critical importance to develop novel, and effective therapeutic concepts. We present a fully open, P-loop exposing conformer of KRAS G13D by X-ray crystallography at 1.4-2.4 Å resolution in Mg2+-free phosphate and malonate buffers. The G13D conformer has the switch-I region displaced in an upright position leaving the catalytic core fully exposed. To prove that this state is druggable, we developed a P-loop-targeting monoclonal antibody (mAb). The mAb displayed high-affinity binding to G13D and was shown using high resolution fluorescence microscopy to be spontaneously taken up by G13D-mutated HCT 116 cells (human CRC derived) by macropinocytosis. The mAb inhibited KRAS signalling in phosphoproteomic and genomic studies. Taken together, the data propose novel druggable space of G13D that is reachable in the cellular context. It is our hope that these findings will stimulate attempts to drug this fully open state G13D conformer using mAbs or other modalities.


Asunto(s)
Anticuerpos Monoclonales , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/química , Cristalografía por Rayos X , Biología Computacional/métodos , Mutación , Modelos Moleculares , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo
2.
Nat Commun ; 13(1): 2700, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35577776

RESUMEN

Ribonucleotide reductase (RNR) is an essential enzyme that catalyzes the synthesis of DNA building blocks in virtually all living cells. NrdR, an RNR-specific repressor, controls the transcription of RNR genes and, often, its own, in most bacteria and some archaea. NrdR senses the concentration of nucleotides through its ATP-cone, an evolutionarily mobile domain that also regulates the enzymatic activity of many RNRs, while a Zn-ribbon domain mediates binding to NrdR boxes upstream of and overlapping the transcription start site of RNR genes. Here, we combine biochemical and cryo-EM studies of NrdR from Streptomyces coelicolor to show, at atomic resolution, how NrdR binds to DNA. The suggested mechanism involves an initial dodecamer loaded with two ATP molecules that cannot bind to DNA. When dATP concentrations increase, an octamer forms that is loaded with one molecule each of dATP and ATP per monomer. A tetramer derived from this octamer then binds to DNA and represses transcription of RNR. In many bacteria - including well-known pathogens such as Mycobacterium tuberculosis - NrdR simultaneously controls multiple RNRs and hence DNA synthesis, making it an excellent target for novel antibiotics development.


Asunto(s)
Ribonucleótido Reductasas , Streptomyces coelicolor , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Regulación Bacteriana de la Expresión Génica , Nucleótidos/química , Ribonucleótido Reductasas/genética , Ribonucleótido Reductasas/metabolismo , Streptomyces coelicolor/metabolismo
3.
Genes (Basel) ; 13(2)2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35205349

RESUMEN

This study analyzed the genetic variability, inbreeding and population structure of the Tunisian-North African dairy sheep breed, the Sicilo-Sarde (SS), created by crossing the Sarda and Comisana dairy breeds. The level of variability in the SS, considered as an endangered breed after a dramatic decrease, was assessed using 17 microsatellite markers by analyzing the two breed populations sampled from their respective cradles: SS of Beja (SSB, n = 27) and SS of Mateur (SSM, n = 25). High levels of genetic diversity in SS were revealed, with a total of 212 alleles, a high mean number of alleles (12.47 ± 4.17) and a high average polymorphism information content (PIC) (0.81 ± 0.10). The observed heterozygosity was considerable in SSB and SSM (0.795 and 0.785, respectively). The inbreeding level measured by the population inbreeding coefficient FIS is higher in the SSM population (0.121) than in the SSB population (0.090). The higher genetic diversity level detected in SSB reflected the effect of new Italian Sarda genes introduced by intra-uterine artificial insemination recently practiced in this population. The Wilcoxon test and the mode-shift distribution indicated that the SS breed is a non-bottlenecked population. The structural analysis reflected the historical miscegenation practiced during the breed creation and highlighted further ancient miscegenation, which could date back to the first waves of sheep introduction to the western Mediterranean region. Microsatellite markers were successfully applied in the assessment of the genetic variability of SS and should be used in monitoring this variability during the application of conservation strategies.


Asunto(s)
Variación Genética , Repeticiones de Microsatélite , Alelos , Animales , Variación Genética/genética , Heterocigoto , Endogamia , Repeticiones de Microsatélite/genética , Ovinos/genética
4.
J Biol Chem ; 297(2): 101008, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34314684

RESUMEN

Ribonucleotide reductases (RNRs) catalyze the reduction of ribonucleotides to the corresponding deoxyribonucleotides, the building blocks of DNA. RNRs are specific for either ribonucleoside diphosphates or triphosphates as substrates. As far as is known, oxygen-dependent class I RNRs (NrdAB) all reduce ribonucleoside diphosphates, and oxygen-sensitive class III RNRs (NrdD) are all ribonucleoside triphosphate reducers, whereas the adenosylcobalamin-dependent class II (NrdJ) contains both ribonucleoside diphosphate and triphosphate reducers. However, it is unknown how this specificity is conveyed by the active site of the enzymes and how this feature developed in RNR evolution. By structural comparison of the active sites in different RNRs, we identified the apical loop of the phosphate-binding site as a potential structural determinant of substrate specificity. Grafting two residues from this loop from a diphosphate- to a triphosphate-specific RNR caused a change in preference from ribonucleoside triphosphate to diphosphate substrates in a class II model enzyme, confirming them as the structural determinants of phosphate specificity. The investigation of the phylogenetic distribution of this motif in class II RNRs yielded a likely monophyletic clade with the diphosphate-defining motif. This indicates a single evolutionary-split event early in NrdJ evolution in which diphosphate specificity developed from the earlier triphosphate specificity. For those interesting cases where organisms contain more than one nrdJ gene, we observed a preference for encoding enzymes with diverse phosphate specificities, suggesting that this varying phosphate specificity confers a selective advantage.


Asunto(s)
Evolución Molecular , Lactobacillus leichmannii/enzimología , Fosfatos/química , Ribonucleótido Reductasas/química , Ribonucleótido Reductasas/metabolismo , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Lactobacillus leichmannii/química , Fosfatos/metabolismo , Filogenia , Unión Proteica , Especificidad por Sustrato , Thermotoga maritima/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA