Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Neurobiol ; 59(2): 1151-1167, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34855115

RESUMEN

Time course of changes in neuroinflammatory processes in the dorsal and ventral hippocampus was studied during the early period after lateral fluid percussion-induced neocortical traumatic brain injury (TBI) in the ipsilateral and contralateral hemispheres. In the ipsilateral hippocampus, neuroinflammation (increase in expression of pro-inflammatory cytokines) was evident from day 1 after TBI and ceased by day 14, while in the contralateral hippocampus, it was mainly limited to the dorsal part on day 1. TBI induced an increase in hippocampal corticosterone level on day 3 bilaterally and an accumulation of Il1b on day 1 in the ipsilateral hippocampus. Activation of microglia was observed from day 7 in different hippocampal areas of both hemispheres. Neuronal cell loss was detected in the ipsilateral dentate gyrus on day 3 and extended to the contralateral hippocampus by day 7 after TBI. The data suggest that TBI results in distant hippocampal damage (delayed neurodegeneration in the dentate gyrus and microglia proliferation in both the ipsilateral and contralateral hippocampus), the time course of this damage being different from that of the neuroinflammatory response.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Neocórtex , Enfermedades Neuroinflamatorias , Ratas , Animales , Lesiones Traumáticas del Encéfalo/metabolismo , Muerte Celular , Proliferación Celular , Citocinas/metabolismo , Hipocampo/metabolismo , Microglía/metabolismo , Neocórtex/metabolismo , Enfermedades Neuroinflamatorias/metabolismo
2.
Int J Mol Sci ; 22(11)2021 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-34070933

RESUMEN

Hippocampal damage after traumatic brain injury (TBI) is associated with late posttraumatic conditions, such as depression, cognitive decline and epilepsy. Mechanisms of selective hippocampal damage after TBI are not well understood. In this study, using rat TBI model (lateral fluid percussion cortical injury), we assessed potential association of immediate posttraumatic seizures and changes in corticosterone (CS) levels with neuroinflammation and neuronal cell loss in the hippocampus. Indices of distant hippocampal damage (neurodegeneration and neuroinflammation) were assessed using histological analysis (Nissl staining, Iba-1 immunohistochemical staining) and ELISA (IL-1ß and CS) 1, 3, 7 and 14 days after TBI or sham operation in male Wistar rats (n = 146). IL-1ß was elevated only in the ipsilateral hippocampus on day 1 after trauma. CS peak was detected on day 3 in blood, the ipsilateral and contralateral hippocampus. Neuronal cell loss in the hippocampus was demonstrated bilaterally; in the ipsilateral hippocampus it started earlier than in the contralateral. Microglial activation was evident in the hippocampus bilaterally on day 7 after TBI. The duration of immediate seizures correlated with CS elevation, levels of IL-1ß and neuronal loss in the hippocampus. The data suggest potential association of immediate post-traumatic seizures with CS-dependent neuroinflammation-mediated distant hippocampal damage.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Corticosterona/sangre , Hipocampo/metabolismo , Microglía/metabolismo , Neuronas/metabolismo , Convulsiones/metabolismo , Animales , Biomarcadores/metabolismo , Lesiones Traumáticas del Encéfalo/patología , Lesiones Traumáticas del Encéfalo/fisiopatología , Recuento de Células , Muerte Celular , Modelos Animales de Enfermedad , Hipocampo/patología , Hipocampo/fisiopatología , Inflamación , Interleucina-1beta/biosíntesis , Masculino , Microglía/patología , Neuronas/patología , Ratas , Ratas Wistar , Convulsiones/patología , Convulsiones/fisiopatología , Factores de Tiempo
3.
Neurosci Res ; 166: 42-54, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32461140

RESUMEN

Unprovoked seizures in the late period of traumatic brain injury (TBI) occur in almost 20% of humans and experimental animals, psychiatric comorbidities being common in both situations. The aim of the study was to evaluate epileptiform activity in the early period of TBI induced by lateral fluid percussion brain injury in adult male Srague-Dawley rats and to reveal potential behavioral and pathomorphological correlates of early electrophysiological alterations. One week after TBI the group of animals was remarkably heterogeneous regarding the incidence of bifrontal 7-Hz spikes and spike-wave discharges (SWDs). It consisted of 3 typical groups: a) rats with low baseline and high post-craniotomy SWD level; b)with constantly low both baseline and post-craniotomy SWD levels; c) constantly high both baseline and post-craniotomy SWD levels. Rats with augmented SWD occurrence after TBI demonstrated freezing episodes accompanying SWDs as well as increased anxiety-like behavior (difficulty of choosing). The discharges were definitely associated with sleep phases. The incidence of SWDs positively correlated with the area of glial activation in the neocortex but not in the hippocampus.The translational potential of the data is revealing new pathophysiological links between epileptiform activity appearance, direct cortical and distant hippocampal damage and anxiety-like behavior, putative early predictors of late posttraumatic pathology.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Alta del Paciente , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Modelos Animales de Enfermedad , Electroencefalografía , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Convulsiones
4.
Brain Sci ; 10(9)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825101

RESUMEN

BACKGROUND: In humans, early pathological activity on invasive electrocorticograms (ECoGs) and its putative association with pathomorphology in the early period of traumatic brain injury (TBI) remains obscure. METHODS: We assessed pathological activity on scalp electroencephalograms (EEGs) and ECoGs in patients with acute TBI, early electrophysiological changes after lateral fluid percussion brain injury (FPI), and electrophysiological correlates of hippocampal damage (microgliosis and neuronal loss), a week after TBI in rats. RESULTS: Epileptiform activity on ECoGs was evident in 86% of patients during the acute period of TBI, ECoGs being more sensitive to epileptiform and periodic discharges. A "brush-like" ECoG pattern superimposed over rhythmic delta activity and periodic discharge was described for the first time in acute TBI. In rats, FPI increased high-amplitude spike incidence in the neocortex and, most expressed, in the ipsilateral hippocampus, induced hippocampal microgliosis and neuronal loss, ipsilateral dentate gyrus being most vulnerable, a week after TBI. Epileptiform spike incidence correlated with microglial cell density and neuronal loss in the ipsilateral hippocampus. CONCLUSION: Epileptiform activity is frequent in the acute period of TBI period and is associated with distant hippocampal damage on a microscopic level. This damage is probably involved in late consequences of TBI. The FPI model is suitable for exploring pathogenetic mechanisms of post-traumatic disorders.

5.
Acta Neurobiol Exp (Wars) ; 77(3): 244-253, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29182615

RESUMEN

We have studied alterations in the properties of long-term potentiation (LTP) in hippocampal slices of juvenile rats induced by the exposure of animals to different individual stressors usually used in batteries of chronic unpredictable stress (CUS), a widely used model of depression. Social isolation for 16 h did substantially affect neither the magnitude and nor the development of LTP. The effects of stroboscopic illumination and water deprivation appeared most severe, though opposite: the first stressor had activating effect, whereas the second one inhibited the development of LTP. In addition to the effects of these factors on the LTP magnitude, they also affected the patterns of LTP development. In this study weak tetanization with different probability of maintenance was used, and most of stressors, in spite of the similar LTP magnitude, influenced significantly on the process of consolidation. In hippocampal slices from rats maintained on wet bedding for 16 h, the time course but not magnitude of LTP significantly differed from that observed in the control or socially isolated rats. The weakest effect on LTP was observed in hippocampal slices of the rats exposed to food deprivation. In these animals, only some differences were observed in the development of LTP as compared to socially isolated rats. These data allow ranging stressors used in CUS paradigms according to the severity of their potential effects on neuronal function and animal behavior.


Asunto(s)
Hipocampo/fisiopatología , Potenciación a Largo Plazo/fisiología , Aislamiento Social/psicología , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología , Análisis de Varianza , Animales , Biofisica , Estimulación Eléctrica , Privación de Alimentos , Técnicas In Vitro , Ratas , Ratas Wistar , Privación de Agua
6.
Acta Neurobiol Exp (Wars) ; 76(4): 324-333, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-28094823

RESUMEN

Depression is the most common form of mental disability in the world. Depressive episodes may be precipitated by severe acute stressful events or by mild chronic stressors. Studies on the mechanisms of depression require both appropriate experimental models (most of them based on the exposure of animals to chronic stressors), and appropriate tests for assessment of depressive states. In this study male Wistar rats were exposed to two different chronic stress paradigms: an eight-week chronic unpredictable mild stress or a two-week combined chronic stress. The behavioral effects of stress were evaluated using sucrose preference, forced swim and open field tests. After the exposure to chronic unpredictable mild stress, anhedonia was developed, activity in the open field increased, while no changes in the duration of passive floating could be detected. After chronic combined stress, anhedonia was also evident, whereas behavior in the open field and forced swim test did not change. The levels of corticosterone in the blood and brain structures involved in stress-response did not differ from control in both experiments. The absence of significant changes in corticosterone levels and passive floating may be indicative of the adaptation of animals to chronic stress. Anhedonia appears to be a more sensitive indicator of depressive-like behavioral effects of chronic stress as compared to behavior in the forced swim or open field tests.


Asunto(s)
Depresión/etiología , Depresión/fisiopatología , Modelos Animales de Enfermedad , Electrochoque/efectos adversos , Aislamiento Social/psicología , Animales , Encéfalo/metabolismo , Corticosterona/metabolismo , Depresión/sangre , Depresión/patología , Conducta Exploratoria , Preferencias Alimentarias , Locomoción , Masculino , Ratas , Ratas Wistar , Sacarosa/administración & dosificación , Natación/psicología , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA