Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nature ; 598(7879): 65-71, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616057

RESUMEN

The human eye can distinguish as many as 10,000 different colours but is far less sensitive to variations in intensity1, meaning that colour is highly desirable when interpreting images. However, most biological samples are essentially transparent, and nearly invisible when viewed using a standard optical microscope2. It is therefore highly desirable to be able to produce coloured images without needing to add any stains or dyes, which can alter the sample properties. Here we demonstrate that colorimetric histology images can be generated using full-sized plasmonically active microscope slides. These slides translate subtle changes in the dielectric constant into striking colour contrast when samples are placed upon them. We demonstrate the biomedical potential of this technique, which we term histoplasmonics, by distinguishing neoplastic cells from normal breast epithelium during the earliest stages of tumorigenesis in the mouse MMTV-PyMT mammary tumour model. We then apply this method to human diagnostic tissue and validate its utility in distinguishing normal epithelium, usual ductal hyperplasia, and early-stage breast cancer (ductal carcinoma in situ). The colorimetric output of the image pixels is compared to conventional histopathology. The results we report here support the hypothesis that histoplasmonics can be used as a novel alternative or adjunct to general staining. The widespread availability of this technique and its incorporation into standard laboratory workflows may prove transformative for applications extending well beyond tissue diagnostics. This work also highlights opportunities for improvements to digital pathology that have yet to be explored.


Asunto(s)
Colorimetría/instrumentación , Colorimetría/métodos , Técnicas Histológicas/instrumentación , Microscopía/instrumentación , Animales , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Estudios de Cohortes , Modelos Animales de Enfermedad , Femenino , Humanos , Antígeno Ki-67/análisis , Ratones , Ratones Endogámicos C57BL
2.
Biomed Opt Express ; 10(10): 4964-4974, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31646022

RESUMEN

Characterising and understanding the mechanisms involved in cell death are especially important to combating threats to human health, particularly for the study of antimicrobial peptides and their effectiveness against pathogenic fungi. However, imaging these processes often relies on the use of synthetic molecules which bind to specific cellular targets to produce contrast. Here we study yeast cell death, induced by the anti-fungal peptide, NaD1. By treating yeast as a model organism we aim to understand anti-fungal cell death processes without relying on sample modification. Using a quantitative phase imaging technique, ptychography, we were able to produce label free images of yeast cells during death and use them to investigate the mode of action of NaD1. Using this technique we were able to identify a significant phase shift which provided a clear signature of yeast cell death. Additionally, ptychography identifies cell death much earlier than a comparative fluorescence study, providing new insights into the cellular changes that occur during cell death. The results indicate ptychography has great potential as a means of providing additional information about cellular processes which otherwise may be masked by indirect labelling approaches.

3.
J Appl Crystallogr ; 50(Pt 5): 1533-1540, 2017 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29021736

RESUMEN

The recent availability of extremely intense, femtosecond X-ray free-electron laser (XFEL) sources has spurred the development of serial femtosecond nanocrystallography (SFX). Here, SFX is used to analyze nanoscale crystals of ß-hematin, the synthetic form of hemozoin which is a waste by-product of the malaria parasite. This analysis reveals significant differences in ß-hematin data collected during SFX and synchrotron crystallography experiments. To interpret these differences two possibilities are considered: structural differences between the nanocrystal and larger crystalline forms of ß-hematin, and radiation damage. Simulation studies show that structural inhomogeneity appears at present to provide a better fit to the experimental data. If confirmed, these observations will have implications for designing compounds that inhibit hemozoin formation and suggest that, for some systems at least, additional information may be gained by comparing structures obtained from nanocrystals and macroscopic crystals of the same molecule.

4.
J Vis Exp ; (126)2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28872125

RESUMEN

The precise details of the interaction of intense X-ray pulses with matter are a topic of intense interest to researchers attempting to interpret the results of femtosecond X-ray free electron laser (XFEL) experiments. An increasing number of experimental observations have shown that although nuclear motion can be negligible, given a short enough incident pulse duration, electronic motion cannot be ignored. The current and widely accepted models assume that although electrons undergo dynamics driven by interaction with the pulse, their motion could largely be considered 'random'. This would then allow the supposedly incoherent contribution from the electronic motion to be treated as a continuous background signal and thus ignored. The original aim of our experiment was to precisely measure the change in intensity of individual Bragg peaks, due to X-ray induced electronic damage in a model system, crystalline C60. Contrary to this expectation, we observed that at the highest X-ray intensities, the electron dynamics in C60 were in fact highly correlated, and over sufficiently long distances that the positions of the Bragg reflections are significantly altered. This paper describes in detail the methods and protocols used for these experiments, which were conducted both at the Linac Coherent Light Source (LCLS) and the Australian Synchrotron (AS) as well as the crystallographic approaches used to analyse the data.


Asunto(s)
Fulerenos/metabolismo , Nanopartículas/metabolismo , Difracción de Rayos X/métodos , Modelos Biológicos
5.
Sci Adv ; 2(9): e1601186, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27626076

RESUMEN

X-ray free-electron lasers (XFELs) deliver x-ray pulses with a coherent flux that is approximately eight orders of magnitude greater than that available from a modern third-generation synchrotron source. The power density of an XFEL pulse may be so high that it can modify the electronic properties of a sample on a femtosecond time scale. Exploration of the interaction of intense coherent x-ray pulses and matter is both of intrinsic scientific interest and of critical importance to the interpretation of experiments that probe the structures of materials using high-brightness femtosecond XFEL pulses. We report observations of the diffraction of extremely intense 32-fs nanofocused x-ray pulses by a powder sample of crystalline C60. We find that the diffraction pattern at the highest available incident power significantly differs from the one obtained using either third-generation synchrotron sources or XFEL sources operating at low output power and does not correspond to the diffraction pattern expected from any known phase of crystalline C60. We interpret these data as evidence of a long-range, coherent dynamic electronic distortion that is driven by the interaction of the periodic array of C60 molecular targets with intense x-ray pulses of femtosecond duration.


Asunto(s)
Fulerenos/química , Nanopartículas/química , Difracción de Rayos X , Cristalografía por Rayos X , Electrones , Rayos Láser , Luz , Sincrotrones , Rayos X
6.
Ultramicroscopy ; 143: 88-92, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24209602

RESUMEN

Phase-diverse X-ray coherent diffractive imaging (CDI) provides a route to high sensitivity and spatial resolution with moderate radiation dose. It also provides a robust solution to the well-known phase-problem, making on-line image reconstruction feasible. Here we apply phase-diverse CDI to a cellular sample, obtaining images of an erythrocyte infected by the sexual stage of the malaria parasite, Plasmodium falciparum, with a radiation dose significantly lower than the lowest dose previously reported for cellular imaging using CDI. The high sensitivity and resolution allow key biological features to be identified within intact cells, providing complementary information to optical and electron microscopy. This high throughput method could be used for fast tomographic imaging, or to generate multiple replicates in two-dimensions of hydrated biological systems without freezing or fixing. This work demonstrates that phase-diverse CDI is a valuable complementary imaging method for the biological sciences and ready for immediate application.


Asunto(s)
Diagnóstico por Imagen/métodos , Malaria Falciparum/diagnóstico , Parásitos/ultraestructura , Plasmodium falciparum/ultraestructura , Difracción de Rayos X/métodos , Animales , Eritrocitos/parasitología , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía Electrónica/métodos , Imagen Óptica/métodos , Sensibilidad y Especificidad
7.
Sci Rep ; 3: 2288, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23887204

RESUMEN

X-ray tomography can provide structural information of whole cells in close to their native state. Radiation-induced damage, however, imposes a practical limit to image resolution, and as such, a choice between damage, image contrast, and image resolution must be made. New coherent diffractive imaging techniques, such Fresnel Coherent Diffractive Imaging (FCDI), allows quantitative phase information with exceptional dose efficiency, high contrast, and nano-scale resolution. Here we present three-dimensional quantitative images of a whole eukaryotic cell by FCDI at a spatial resolution below 70 nm with sufficient phase contrast to distinguish major cellular components. From our data, we estimate that the minimum dose required for a similar resolution is close to that predicted by the Rose criterion, considerably below accepted estimates of the maximum dose a frozen-hydrated cell can tolerate. Based on the dose efficiency, contrast, and resolution achieved, we expect this technique will find immediate applications in tomographic cellular characterisation.


Asunto(s)
Análisis de la Célula Individual/métodos , Tomografía Computarizada por Rayos X/métodos , Eritrocitos/citología , Eritrocitos/parasitología , Humanos
8.
Acta Crystallogr A ; 69(Pt 1): 108-18, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23250067

RESUMEN

The recent development of X-ray free-electron laser sources has created new opportunities for the structural analysis of protein nanocrystals. The extremely small sizes of the crystals, as well as imperfections of the crystal structure, result in an interference phenomenon in the diffraction pattern. With decreasing crystallite size the structural imperfections play a role in the formation of the diffraction pattern that is comparable in importance to the size effects and should be taken into account during the data analysis and structure reconstruction processes. There now exists a need to develop new methods of protein structure determination that do not depend on the availability of good-quality crystals and that can treat proteins under conditions close to the active form. This paper demonstrates an approach that is specifically tailored to nanocrystalline samples and offers a unique crystallographic solution.


Asunto(s)
Cristalografía por Rayos X/métodos , Nanopartículas/química , Complejo de Proteína del Fotosistema I/química , Algoritmos , Modelos Moleculares , Dispersión de Radiación , Rayos X
9.
Opt Express ; 20(24): 26778-85, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-23187532

RESUMEN

We have applied Fresnel Coherent Diffractive Imaging (FCDI) to image an intact pollen grain from Convallaria majalis. This approach allows us to resolve internal structures without the requirement to chemically treat or slice the sample into thin sections. Coherent X-ray diffraction data from this pollen grain-composed of a hologram and higher resolution scattering information-was collected at a photon energy of 1820 eV and reconstructed using an iterative algorithm. A comparison with images recorded using transmission electron microscopy demonstrates that, while the resolution of these images is limited by the available flux and mechanical stability, we observed structures internal to the pollen grain-the intine/exine separations and pore dimensions-finer than 60 nm. The potential of this technique for further biological imaging applications is discussed.


Asunto(s)
Algoritmos , Convallaria/ultraestructura , Imagenología Tridimensional/métodos , Microscopía Electrónica de Transmisión/métodos , Polen/ultraestructura , Difracción de Rayos X/métodos , Holografía
10.
Opt Express ; 20(4): 3967-74, 2012 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-22418153

RESUMEN

We describe the spatial coherence properties of a cold atom electron source in the framework of a quasihomogeneous wavefield. The model is used as the basis for direct measurements of the transverse spatial coherence length of electron bunches extracted from a cold atom electron source. The coherence length is determined from the measured visibility of a propagated electron distribution with a sinusoidal profile of variable spatial frequency. The electron distribution was controlled via the intensity profile of an atomic excitation laser beam patterned with a spatial light modulator. We measure a lower limit to the coherence length at the source of lc = 7.8 ± 0.9 nm.

11.
Phys Rev Lett ; 108(7): 073901, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22401205

RESUMEN

Ptychographic coherent diffractive imaging (CDI) has been extensively applied using both x rays and electrons. The extension to atomic resolution has been elusive. This Letter demonstrates ptychographic electron diffractive imaging at atomic resolution, permitting identification of structure in a boron nitride helical cone at a resolution of order 1 Å, beyond that of comparative Z-contrast images. A scanning transmission electron microscope is used to create a diverging illumination in a defocused Fresnel CDI geometry, providing a robust strategy leading to a unique solution.

12.
Ultramicroscopy ; 111(8): 1184-8, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21762656

RESUMEN

This paper demonstrates the application of the high sensitivity, low radiation dose imaging method recently presented as phase diverse coherent diffraction imaging, to the study of biological and other weakly scattering samples. The method is applied, using X-ray illumination, to quantitative imaging of the granular precursors of underwater adhesive produced by the marine sandcastle worm, Phragmatopoma californica. We are able to observe the internal structure of the adhesive precursors in a number of states.


Asunto(s)
Adhesivos/química , Poliquetos/química , Algoritmos , Animales , Procesamiento de Imagen Asistido por Computador , Microscopía/métodos , Estructura Molecular , Proteínas/química , Difracción de Rayos X/métodos , Difracción de Rayos X/estadística & datos numéricos
13.
Opt Lett ; 36(11): 1954-6, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21633413

RESUMEN

As the resolution in coherent diffractive imaging improves, interexposure and intraexposure sample dynamics, such as motion, degrade the quality of the reconstructed image. Selecting data sets that include only exposures where tolerably little motion has occurred is an inefficient use of time and flux, especially when detector readout time is significant. We provide an experimental demonstration of an approach in which all images of a data set exhibiting sample motion are combined to improve the quality of a reconstruction. This approach is applicable to more general sample dynamics (including sample damage) that occur during measurement.

14.
Opt Express ; 19(9): 8073-8, 2011 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-21643056

RESUMEN

The experimental characterization of the coherence properties of hard X-ray sources is reported and discussed. The source is described by its Mutual Optical Intensity (MOI). The coherent-mode decomposition is applied to the MOI described by a Gaussian-Schell model. The method allows for a direct, quantitative characterization of the degree of coherence of both synchrotron and laboratory sources. The latter represents the first example of characterizing a low coherence hard x-ray source.


Asunto(s)
Modelos Teóricos , Sincrotrones , Rayos X , Simulación por Computador , Luz , Dispersión de Radiación
15.
Phys Rev Lett ; 106(1): 013903, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21231742

RESUMEN

This Letter demonstrates that coherent diffractive imaging (CDI), in combination with phase-diversity methods, provides reliable and artefact free high-resolution images. Here, using x rays, experimental results show a threefold improvement in the available image contrast. Furthermore, in conditions requiring low imaging dose, it is demonstrated that phase-diverse CDI provides a factor of 2 improvement in comparison to previous CDI techniques.

16.
Curr Opin Struct Biol ; 20(5): 623-31, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20869868

RESUMEN

X-ray imaging of biological samples is progressing rapidly. In this paper we review the progress to date in high-resolution imaging of cellular architecture. In particular we survey the progress in soft X-ray tomography and argue that the field is coming of age and that important biological insights are starting to emerge. We then review the new ideas based on coherent diffraction. These methods are at a much earlier stage of development but, as they eliminate the need for X-ray optics, have the capacity to provide substantially better spatial resolution than zone plate-based methods.


Asunto(s)
Células , Imagen Molecular/métodos , Humanos , Microscopía , Tomografía por Rayos X , Difracción de Rayos X , Rayos X
17.
Opt Lett ; 34(14): 2198-200, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19823547

RESUMEN

A method for numerically recovering the coherent modes and their occupancies from a known mutual optical intensity function is described. As an example, the technique is applied to previously published experimental data from an x-ray undulator source. The data are found to be described by three coherent modes, and the functional forms and relative occupancies of these modes are recovered.

18.
Opt Express ; 17(14): 11905-15, 2009 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-19582105

RESUMEN

We present the first experimental demonstration of the astigmatic phase retrieval technique, in which the diffracted wavefield is distorted by cylindrical curvature in two orthogonal directions. A charge-one vortex, a charge-two vortex, and a simple test image are all correctly reconstructed.


Asunto(s)
Óptica y Fotónica , Algoritmos , Simulación por Computador , Diseño de Equipo , Interpretación de Imagen Asistida por Computador/métodos , Almacenamiento y Recuperación de la Información , Rayos Láser , Microscopía/métodos , Dispositivos Ópticos
19.
Opt Lett ; 33(20): 2341-3, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18923616

RESUMEN

A method is proposed that uses maximum entropy analysis of a Young's two-slit interference pattern for the measurement of the spectrum of a high-harmonic-generation light source. The approach is tested using experimental data, and the results are found to be consistent with those obtained directly using a grazing incidence spectrometer.

20.
Cytometry A ; 73(10): 949-57, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18671251

RESUMEN

Methods for imaging cellular architecture and ultimately macromolecular complexes and individual proteins, within a cellular environment, are an important goal for cell and molecular biology. Coherent diffractive imaging (CDI) is a method of lensless imaging that can be applied to any individual finite object. A diffraction pattern from a single biological structure is recorded and an iterative Fourier transform between real space and reciprocal space is used to reconstruct information about the architecture of the sample to high resolution. As a test system for cellular imaging, we have applied CDI to an important human pathogen, the malaria parasite, Plasmodium falciparum. We have employed a novel CDI approach, known as Fresnel CDI, which uses illumination with a curved incident wavefront, to image red blood cells infected with malaria parasites. We have examined the intrinsic X-ray absorption contrast of these cells and compared them with cells contrasted with heavy metal stains or immunogold labeling. We compare CDI images with data obtained from the same cells using scanning electron microscopy, light microscopy, and scanning X-ray fluorescence microscopy. We show that CDI can offer new information both within and at the surface of complex biological specimens at a spatial resolution of better than 40 nm. and we demonstrate an imaging modality that conveniently combines scanning X-ray fluorescence microscopy with CDI. The data provide independent confirmation of the validity of the coherent diffractive image and demonstrate that CDI offers the potential to become an important and reliable new high-resolution imaging modality for cell biology. CDI can detect features at high resolution within unsectioned cells.


Asunto(s)
Eritrocitos/diagnóstico por imagen , Eritrocitos/parasitología , Plasmodium falciparum/aislamiento & purificación , Difracción de Rayos X/métodos , Animales , Eritrocitos/ultraestructura , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Microscopía Electrónica de Transmisión de Rastreo , Microscopía Fluorescente , Radiografía , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA