Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(11): 1299, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37828343

RESUMEN

In 2015, the failure of the Fundão dam in Mariana, Brazil released ~43 million m3 of iron mining tailings into the environment. Despite restoration initiatives in the following years, few studies-and most focused on revegetation-have evaluated the effectiveness of the restoration process in areas impacted by the disaster. We aimed to evaluate the responses of the arthropod community in areas impacted by iron mining tailings deposition from the Fundão dam that is in the restoration process. We defined sampling units in the riparian zone of the Gualaxo do Norte River, which is under restoration, and in a native not impacted riparian zone. We collected soil arthropods using pitfall traps and sampled environmental variables in the same sites. We used generalize least squares models (GLS) to test if the restored areas already presented values of arthropod diversity and functional group abundance similar to the reference area and to test which environmental variables are influencing arthropod diversity. We also tested how large the differences of arthropod community composition between the study areas and used the index of indicator species (IndVal) to verify which species could be used as an indicator of reference or restoration areas. The diversity of arthropods and the functional groups of detritivores and omnivores were higher in the native riparian zone. Understory density, soil density, organic matter content, and microbial biomass carbon were the environmental variables that significantly explained the diversity and species composition of arthropods. We show that restoration areas still have different soil arthropod diversity values and community composition when compared to reference areas. Evaluating the response of the arthropod community to the restoration process and long-term monitoring are essential to achieve a satisfactory result in this process and achieve a self-sustaining ecosystem.


Asunto(s)
Artrópodos , Animales , Ecosistema , Suelo , Monitoreo del Ambiente , Minería , Hierro , Brasil , Ríos
2.
Proc Natl Acad Sci U S A ; 119(27): e2202310119, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759674

RESUMEN

Human activities pose a major threat to tropical forest biodiversity and ecosystem services. Although the impacts of deforestation are well studied, multiple land-use and land-cover transitions (LULCTs) occur in tropical landscapes, and we do not know how LULCTs differ in their rates or impacts on key ecosystem components. Here, we quantified the impacts of 18 LULCTs on three ecosystem components (biodiversity, carbon, and soil), based on 18 variables collected from 310 sites in the Brazilian Amazon. Across all LULCTs, biodiversity was the most affected ecosystem component, followed by carbon stocks, but the magnitude of change differed widely among LULCTs and individual variables. Forest clearance for pasture was the most prevalent and high-impact transition, but we also identified other LULCTs with high impact but lower prevalence (e.g., forest to agriculture). Our study demonstrates the importance of considering multiple ecosystem components and LULCTs to understand the consequences of human activities in tropical landscapes.


Asunto(s)
Efectos Antropogénicos , Biodiversidad , Conservación de los Recursos Naturales , Bosque Lluvioso , Agricultura , Brasil , Carbono , Humanos
3.
Sci Total Environ ; 651(Pt 1): 1321-1331, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30360264

RESUMEN

Naturally fragmented landscapes provide suitable scenarios through which to investigate patch and landscape effects on biodiversity patterns in areas that are isolated from the disturbances usually associated with human-made fragments. We aimed to investigate the patch and landscape effects on the diversity of forest-dependent and matrix-tolerant dung beetles in a naturally fragmented landscape. We also assessed the influence that seasonal and vegetation variations had on these dung beetles. We sampled dung beetles during two summers and two winters in 14 forest islands of various sizes and shapes within a natural mountainous forest archipelago in southeast Brazil. We measured the patch and landscape variables based on high-resolution multispectral images of circular sectors with radii of 100, 250, and 500 m. We used generalized linear mixed models to relate dung beetle metrics to patch and landscape attributes. The interaction between canopy cover and season influenced both species' richness and abundance of the dung beetle metacommunity. The forest-dependent species' richness increased with greater canopy cover, regardless of the season. Patch attributes (e.g., size, canopy cover, distance to the closest patch, and distance to continuous forest) and landscape attributes (e.g., percentage of forest in the landscape, total edge, number of patches, distance to the nearest neighbor, and shape complexity) had small general effects on dung beetle species as a whole and on matrix-tolerant species in particular. However, these values strongly influenced forest-dependent species' richness, abundance, and temporal beta diversity. The matrix-tolerant species, therefore, mask the effects of patch and landscape effects on forest-dependent species within the mountainous forest archipelago. In other words, the changes in these patch and landscape attributes influenced forest-dependent and matrix-tolerant species differently. Therefore, the evaluation of entire metacommunities may not be helpful when evaluating species-specific responses in mixed landscapes-a fact that impairs the conservation of forest-dependent species.


Asunto(s)
Biodiversidad , Escarabajos/fisiología , Bosque Lluvioso , Animales , Brasil , Dinámica Poblacional , Estaciones del Año , Especificidad de la Especie
4.
PLoS One ; 11(6): e0157442, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27336589

RESUMEN

Mountains provide an interesting context in which to study the many facets of biodiversity in response to macroclimate, since environmental conditions change rapidly due to elevation. Although the decrease in biodiversity with increasing elevation is generally accepted, our understanding of the variation of functional diversity along altitudinal gradients is still poorly known. The partitioning of diversity into spatial components can help to understand the processes that influence the distribution of species, and these studies are urgently needed in face of the increasing threats to mountain environments throughout the world. We describe the distribution of dung beetle diversity along an altitudinal gradient on a tropical mountain in southeastern Brazil, including the spatial partitioning of taxonomic and functional diversities. The altitudinal gradient ranged from 800 up to 1400 m a.s.l. and we collected dung beetles at every 100 m of altitude. We used the Rao Index to calculate γ, α and ß diversity for taxonomic and functional diversity of dung beetles. Climatic, soil and vegetation variables were used to explain variation in community attributes along the altitudinal gradient. Dung beetle richness declined with altitude and was related to climatic and vegetation variables, but functional diversity did not follow the same pattern. Over 50% of γ taxonomic diversity was caused by among altitudes diversity (ß), while almost 100% of functional diversity was due to the α component. Contrasting ß taxonomic with ß functional diversity, we suggest that there is ecological redundancy among communities and that the environment is filtering species in terms of the Grinnellian niche, rather than the Eltonian niche. ß taxonomic diversity is caused mainly by the turnover component, reinforcing the hypothesis of environmental filtering. Global warming may have strong effects on mountain communities due to upslope range shifts and extinctions, and these events will lead to an even larger than previously expected loss of diversity as dung beetles γ taxonomic diversity is caused mainly by the ß component.


Asunto(s)
Altitud , Biodiversidad , Escarabajos , Ecosistema , Clima Tropical , Animales , Brasil , Geografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA