Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
MicroPubl Biol ; 20242024.
Artículo en Inglés | MEDLINE | ID: mdl-39176285

RESUMEN

Ascaridia galli and Ascaridia dissimilis are the most common and economically impactful nematode parasites of commercial poultry. These infections rarely cause clinical disease, but reduction in feed conversion efficiency is detected. To determine if feed conversion efficiency reductions correlate with any physiological measures independent of clinical disease, we determined if ascarid infections correlate with changes in the weights of the small intestine, liver, or total animal weight (quantitative measures of animal health). No correlation between parasite burden and these metrics were observed, supporting the concept that feed conversion is the only production metric impacted by ascarid infections.

2.
Integr Biol (Camb) ; 152023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37555835

RESUMEN

Sensory pathways first elucidated in Caenorhabditis elegans are conserved across free-living and parasitic nematodes, even though each species responds to a diverse array of compounds. Most nematode sensory assays are performed by tallying observations of worm behavior on two-dimensional planes using agarose plates. These assays have been successful in the study of volatile sensation but are poorly suited for investigation of water-soluble gustation or parasitic nematodes without a free-living stage. In contrast, gustatory assays tend to be tedious, often limited to the manipulation of a single individual at a time. We have designed a nematode sensory assay using a microfluidics device that allows for the study of gustation in a 96-well, three-dimensional environment. This device is suited for free-living worms and parasitic worms that spend their lives in an aqueous environment, and we have used it to show that ivermectin inhibits the gustatory ability of vector-borne parasitic nematodes. Insight box Nematodes are powerful model organisms for understanding the sensory biology of multicellular eukaryotes, and many parasitic species cause disease in humans. Simple sensory assays performed on agarose plates have been the bedrock for establishing the neuronal, genetic, and developmental foundations for many sensory modalities in nematodes. However, these classical assays are poorly suited for translational movement of many parasitic nematodes and the sensation of water-soluble molecules (gustation). We have designed a device for high-throughput nematode sensory assays in a gel matrix. This 'gustatory microplate' is amenable to several species and reveals novel responses by free-living and parasitic nematodes to cues and drugs.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Caenorhabditis elegans , Ensayos Analíticos de Alto Rendimiento/instrumentación , Ensayos Analíticos de Alto Rendimiento/métodos , Animales , Microfluídica/instrumentación , Microfluídica/métodos , Conducta Animal , Brugia pahangi , Dirofilaria immitis
3.
bioRxiv ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37163046

RESUMEN

Sensory pathways first elucidated in Caenorhabditis elegans are conserved across free-living and parasitic nematodes, even though each species responds to a diverse array of compounds. Most nematode sensory assays are performed by tallying observations of worm behavior on two-dimensional planes using agarose plates. These assays have been successful in the study of volatile sensation but are poorly suited for investigation of water-soluble gustation or parasitic nematodes without a free-living stage. In contrast, gustatory assays tend to be tedious, often limited to the manipulation of a single individual at a time. We have designed a nematode sensory assay using a microfluidics device that allows for the study of gustation in a 96-well, three-dimensional environment. This device is suited for free-living worms and parasitic worms that spend their lives in an aqueous environment, and we have used it to show that ivermectin inhibits the gustatory ability of vector-borne parasitic nematodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA