Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Biotechnol Biofuels ; 9: 15, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26807148

RESUMEN

BACKGROUND: Sugar production via pretreatment and enzymatic hydrolysis of cellulosic feedstock, in this case softwood harvest residues, is a critical step in the biochemical conversion pathway towards drop-in biofuels. Mild bisulfite (MBS) pretreatment is an emerging option for the breakdown and subsequent processing of biomass towards fermentable sugars. An environmental assessment of this process is critical to discern its future sustainability in the ever-changing biofuels landscape. RESULTS: The subsequent cradle-to-gate assessment of a proposed sugar production facility analyzes sugar made from woody biomass using MBS pretreatment across all seven impact categories (functional unit 1 kg dry mass sugar), with a specific focus on potential global warming and eutrophication impacts. The study found that the eutrophication impact (0.000201 kg N equivalent) is less than the impacts from conventional beet and cane sugars, while the global warming impact (0.353 kg CO2 equivalent) falls within the range of conventional processes. CONCLUSIONS: This work discusses some of the environmental impacts of designing and operating a sugar production facility that uses MBS as a method of treating cellulosic forest residuals. The impacts of each unit process in the proposed facility are highlighted. A comparison to other sugar-making process is detailed and will inform the growing biofuels literature.

2.
Biotechnol Biofuels ; 8: 72, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25964801

RESUMEN

BACKGROUND: Reducing the amount of water-soluble fermentation inhibitors like furfural is critical for downstream bio-processing steps to biofuels. A theoretical approach for tailoring absorption polymers to reduce these pretreatment contaminants would be useful for optimal bioprocess design. RESULTS: Experiments were performed to measure aqueous furfural partitioning into polymer resins of 5 bisphenol A diglycidyl ether (epoxy) and polydimethylsiloxane (PDMS). Experimentally measured partitioning of furfural between water and PDMS, the more hydrophobic polymer, showed poor performance, with the logarithm of PDMS-to-water partition coefficient falling between -0.62 and -0.24 (95% confidence). In contrast, the fast setting epoxy was found to effectively partition furfural with the logarithm of the epoxy-to-water partition coefficient falling between 0.41 and 0.81 (95% confidence). Flory-Huggins theory is used to predict the partitioning of furfural into diverse polymer absorbents and is useful for predicting these results. CONCLUSION: We show that Flory-Huggins theory can be adapted to guide the selection of polymer adsorbents for the separation of low molecular weight organic species from aqueous solutions. This work lays the groundwork for the general design of polymers for the separation of a wide range of inhibitory compounds in biomass pretreatment streams.

3.
Appl Spectrosc ; 68(11): 1254-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25285420

RESUMEN

Polydimethylsiloxane (PDMS)-based solid-phase micro-extraction (SPME) was used along with Raman spectroscopy (RS) to separate and enhance the detection of five anesthetic compounds (halothane, propofol, isoflurane, enflurane, and etomidate) from aqueous and serum phases. Raman signals in the spectral ranges 250-450 cm(-1) and 950-1050 cm(-1) allowed the unique characterization of all five compounds when extracted into the PDMS phase. The SPME-RS detection of clinically relevant concentrations of aqueous propofol (6.5 µM) and halothane (200 µM) is shown. We quantify the partition coefficient for aqueous halothane in PDMS as log K = 1.9 ± 0.2. Solid-phase micro-extraction of the anesthetics makes their detection possible without the strong autofluorescent interference of serum proteins. Because of low solubility and/or weak Raman scattering, we found it challenging to detect enflurane, isoflurane, and etomidate directly from the aqueous phase, but could we do so with SPME enhancement. These studies show the potential of SPME-RS as a method for the direct detection of anesthetics in blood.


Asunto(s)
Anestésicos/análisis , Microextracción en Fase Sólida/métodos , Espectrometría Raman/métodos , Anestésicos/sangre , Anestésicos/química , Dimetilpolisiloxanos , Humanos , Modelos Lineales , Propofol/análisis , Propofol/sangre , Propofol/química
4.
Appl Spectrosc ; 66(12): 1487-91, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23231913

RESUMEN

Solid-phase microextraction (SPME) was used along with Raman spectroscopy to quantify the partitioning of trace organics into polydimethylsiloxane (PDMS) matrices. PDMS has previously been utilized with SPME-Raman to pre-concentrate trace benzene, toluene, ethyl-benzene, and xylene fuel components from contaminated water, thereby enhancing detected Raman signals. Here, we show that SPME can increase Raman signals more than two orders of magnitude for the compounds investigated. We also demonstrate the quantitative features of SPME-Raman by estimating PDMS-organic partition coefficients for benzene [log(K) = 1.90 ± 10] and toluene [log(K) = 2.35 ± 20] by using linear regression fits in the dilute limit of concentrations. The K values obtained are within the range of values obtained with other quantitative SPME techniques. The method was also used to characterize quinoline, a pyridine-based organic, which yielded reasonable K values [log(K) = 1.20 ± 20]. Combining PDMS-based SPME with a technique such as Raman spectroscopy potentially enhances optical detection methods used in microfluidic systems, wherein PDMS is a common material of construction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA