Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Front Public Health ; 11: 1290553, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292380

RESUMEN

Introduction: The COVID-19 pandemic had a significant effect on influenza activity globally. In this study, we analyzed trends of influenza activity in 2020 during the COVID-19 pandemic in Ghana. Methods: This was a cross-sectional study using active prospective influenza surveillance data from 29 sentinel sites. At the sentinel sites, we enrolled patients presenting with symptoms based on the WHO case definition for influenza-like illness (ILI) and severe acute respiratory illness (SARI). Oro and nasopharyngeal swabs were collected from patients and tested for the presence of influenza viruses using specific primers and probes described by the US-CDC. The percentage of positivity for influenza between 2017-2019 and 2021 was compared to 2020. Using the test for proportions in STATA 17.0 we estimated the difference in influenza activities between two periods. Results and discussion: Influenza activity occurred in a single wave during the 2020 surveillance season into 2021, September 28 2020-March 7 2021 (week 40, 2020-week 9, 2021). Influenza activity in 2020 was significantly lower compared to previous years (2017- 2019, 2021). Influenza A (H3) was more commonly detected during the early part of the year (December 30, 2019-March 8, 2020), while influenza B Victoria was more commonly detected toward the end of the year (September 28-December 28). In Ghana, adherence to the community mitigation strategies introduced to reduce transmission of SARS-CoV-2, which affected the transmission of other infectious diseases, may have also impacted the transmission of influenza. To the best of our knowledge, this is the first study in Ghana to describe the effect of the COVID-19 pandemic on influenza activity. The continuation and strict adherence to the non-pharmaceutical interventions at the community level can help reduce influenza transmission in subsequent seasons.


Asunto(s)
COVID-19 , Gripe Humana , Humanos , Gripe Humana/epidemiología , Pandemias , Ghana/epidemiología , Estudios Transversales , Estudios Prospectivos , COVID-19/epidemiología , SARS-CoV-2
3.
PLoS One ; 17(7): e0271877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35881575

RESUMEN

BACKGROUND: Influenza co-infection with bacteria is a leading cause of influenza-related deaths and severe respiratory infections, especially among high-risk groups like cancer patients undergoing treatment. However, acute respiratory infection (ARI)-like symptoms developed by upper-torso cancer (UTC) patients receiving radiotherapy are considered as side-effects of the radiation. Hence influenza and bacterial pathogens implicated in ARI are not investigated. METHODS: This prospective cohort study examined 85 in-patients with upper-torso cancers undergoing radiotherapy at the National Radiotherapy, Oncology and Nuclear Medicine Centre (NRONMC) of Korle-Bu Teaching Hospital (KBTH) in Accra, Ghana. Eligible patients who consented were recruited into the study from September 2018 to April 2019. Influenza viruses A and B in addition to the following bacteria species Streptococcus pneumonia, Haemophilus influenzae, Neisseria meningitidis and Staphylococcus aureus were detected from oropharyngeal and nasopharyngeal swab specimens collected at three different time points. Presence of respiratory pathogens were investigated by influenza virus isolation in cell culture, bacterial culture, polymerase chain reaction (PCR) and next generation sequencing (NGS) assays. RESULTS: Of the 85 eligible participants enrolled into the study, 87% were females. Participants were 17 to 77 years old, with a median age of 49 years. Most of the participants (88%) enrolled had at least one pathogen present. The most prevalent pathogen was N. meningitidis (63.4%), followed by H. influenzae (48.8%), Influenza viruses A and B (32.9%), S. pneumoniae (32.9%) and S. aureus (12.2%). Approximately, 65% of these participants developed ARI-like symptoms. Participants with previous episodes of ARI, did not live alone, HNC and total radiation less than 50 Gy were significantly associated with ARI. All treatment forms were also significantly associated with ARI. CONCLUSION: Data generated from the study suggests that ARI-like symptoms observed among UTC patients receiving radiotherapy in Ghana, could be due to influenza and bacterial single and co-infections in addition to risk factors and not solely the side-effects of radiation as perceived. These findings will be prime importance for diagnosis, prevention, treatment and control for cancer patients who present with such episodes during treatment.


Asunto(s)
Infecciones Bacterianas , Coinfección , Gripe Humana , Neoplasias , Infecciones del Sistema Respiratorio , Adolescente , Adulto , Anciano , Bacterias/genética , Infecciones Bacterianas/epidemiología , Infecciones Bacterianas/etiología , Coinfección/epidemiología , Femenino , Ghana/epidemiología , Humanos , Lactante , Gripe Humana/complicaciones , Gripe Humana/epidemiología , Masculino , Persona de Mediana Edad , Neoplasias/complicaciones , Neoplasias/radioterapia , Estudios Prospectivos , Infecciones del Sistema Respiratorio/epidemiología , Staphylococcus aureus , Streptococcus pneumoniae , Adulto Joven
4.
Vet Med Sci ; 8(4): 1570-1577, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35451231

RESUMEN

INTRODUCTION: Avian influenza viruses (AIV) cause significant economic losses to poultry farmers worldwide. These viruses have the ability to spread rapidly, infect entire poultry flocks, and can pose a threat to human health. The National Influenza Centre (NIC) at the Noguchi Memorial Institute for Medical Research in collaboration with the Ghana Armed forces (GAF) and the U.S. Naval Medical Research Unit No. 3, Ghana Detachment (NAMRU-3) performs biannual surveillance for influenza viruses among poultry at military barracks throughout Ghana. This study presents poultry surveillance data from the years 2017 to 2019. METHODOLOGY: Tracheal and cloacal swabs from sick and healthy poultry were collected from the backyards of GAF personnel living quarters and transported at 4°C to the NIC. Viral ribonucleic acid (RNA) was isolated and analyzed for the presence of influenza viruses using real-time polymerase chain reaction (PCR) assays. Viral nucleic acids extracted from influenza A-positive specimens were sequenced using universal influenza A-specific primers. RESULTS: Influenza A H9N2 virus was detected in 11 avian species out of 2000 samples tested. Phylogenetic analysis of viral haemagglutinin (HA) protein confirms the possibility of importation of viruses from North Africa and Burkina Faso. Although the detected viruses possess molecular markers of virulence and mammalian host adaptation, the HA cleavage site anlaysis confirmed low pathogenicity of the viruses. CONCLUSIONS: These findings confirm the ongoing spread of H9 viruses among poultry in Ghana. Poultry farmers need to be vigilant for sick birds and take the appropriate public health steps to limit the spread to other animals and spillover to humans.


Asunto(s)
Subtipo H9N2 del Virus de la Influenza A , Gripe Aviar , Filogenia , Animales , Pollos/virología , Granjas , Ghana/epidemiología , Subtipo H9N2 del Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Aves de Corral/virología , Proteínas Virales
5.
PLOS Glob Public Health ; 2(12): e0001104, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36962878

RESUMEN

Influenza virus is an important contributor to acute respiratory illnesses and is estimated to cause up to 650,000 respiratory deaths each year. Ghana recorded influenza viruses as far back as 1918 when the Spanish influenza pandemic led to the death of >100,000 people in a population of 4 million at the time. An outbreak of highly pathogenic avian influenza A(H5N1) among poultry in Ghana in 2007, led to the establishment of virological surveillance for influenza-like illness (ILI) by the Noguchi Memorial Institute for Medical Research (NMIMR). This surveillance system, supported by the U.S. Naval Medical Research Unit-No. 3 (NAMRU-3) and the Ghana Health Service (GHS), monitors circulating influenza strains and activity to better understand the epidemiology of influenza in Ghana. We present here the results of this surveillance system from 2011 to 2019. As part of the Integrated Disease Surveillance and Response (IDSR) system of the GHS under the Ministry of Health (MOH), oropharyngeal and nasopharyngeal swabs were collected from patients who met a modified World Health Organization (WHO) case definition for ILI or severe acute respiratory illness (SARI) through a sentinel surveillance system in the country. Samples were transported to the National Influenza Centre (NIC) at the NMIMR and tested for influenza virus using protocols defined by the United States Centers for Disease Control and Prevention (CDC). Selected isolates were sent to the WHO collaborating centre in the United Kingdom for further antigenic characterization. From 2011 to 2019, the NIC tested a total of 21,747 ILI samples and 3,429 SARI samples. Influenza positivity rates were highest in the 5-14 year old group for both ILI (20.8%) and SARI (23.8%). Compared to females, more males were seen at the health facilities for ILI and SARI symptoms with a statistically significant difference in influenza positive ILI (15% vs 13.2%, p <0.001). In terms of absolute numbers, more cases were seen at the health centres during the wet seasons (April to October) compared to the dry seasons (November to March) in Ghana. This study presents 9 years of surveillance data from outpatient and inpatient setting on influenza activity as well as the influenza A subtypes and B lineages that drive the activity. This presents useful information for influenza vaccine selection and administration. Ghana's unique influenza activity patterns also present a challenge in predicting when an outbreak could occur.

6.
Ghana Med J ; 54(4 Suppl): 77-85, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33976445

RESUMEN

BACKGROUND: A novel coronavirus, SARS-CoV-2 is currently causing a worldwide pandemic. The first cases of SARS-CoV-2 infection were recorded in Ghana on March 12, 2020. Since then, the country has been combatting countrywide community spread. This report describes how the Virology Department, Noguchi Memorial Institute for Medical Research (NMIMR) is supporting the Ghana Health Service (GHS) to diagnose infections with this virus in Ghana. METHODS: The National Influenza Centre (NIC) in the Virology Department of the NMIMR, adopted real-time Polymerase Chain Reaction (rRT-PCR) assays for the diagnosis of the SARS-CoV-2 in January 2020. Samples from suspected cases and contact tracing across Ghana were received and processed for SARS-CoV-2. Samples were 'pooled' to enable simultaneous batch testing of samples without reduced sensitivity. OUTCOMES: From February 3 to August 21, the NMIMR processed 283 946 (10%) samples. Highest number of cases were reported in June when the GHS embarked on targeted contact tracing which led to an increase in number of samples processed daily, peaking at over 7,000 samples daily. There were several issues to overcome including rapid consumption of reagents and consumables. Testing however continued successfully due to revised procedures, additional equipment and improved pipeline of laboratory supplies. Test results are now provided within 24 to 48 hours of sample submission enabling more effective response and containment. CONCLUSION: Following the identification of the first cases of SARS-CoV-2infection by the NMIMR, the Institute has trained other centres and supported the ramping up of molecular testing capacity in Ghana. This provides a blueprint to enable Ghana to mitigate further epidemics and pandemics. FUNDING: The laboratory work was supported with materials from the Ghana Health Service Ministry of Health, the US Naval Medical Research Unit #3, the World Health Organization, the Jack Ma Foundation and the University of Ghana Noguchi Memorial Institute for Medical Research. Other research projects hosted by the Noguchi Memorial Institute for Medical Research contributed reagents and laboratory consumables. The funders had no role in the preparation of this manuscript.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Control de Infecciones/métodos , Vigilancia de la Población , SARS-CoV-2/aislamiento & purificación , COVID-19/epidemiología , Trazado de Contacto/métodos , Trazado de Contacto/estadística & datos numéricos , Ghana/epidemiología , Humanos , Programas Nacionales de Salud , SARS-CoV-2/genética
7.
PLoS One ; 13(12): e0208907, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30566466

RESUMEN

Dengue fever is known to be one of the most common arthropod-borne viral infectious diseases of public health importance. The disease is now endemic in more than 100 countries in Africa, the Americas, the Eastern Mediterranean, Southeast Asia and the Western Pacific with an estimated two fifths of the world's population being at risk. The notable endemic viral hemorrhagic fevers (VHFs) found in West Africa, including yellow fever, Lassa fever, Rift Valley fever, dengue fever and until recently Ebola have been responsible for most outbreaks with fatal consequences. These VHFs usually produce unclear acute febrile illness, especially in the acute phase of infection. In this study we detected the presence of 2 different serotypes (DENV-2 and DENV-3) of Dengue virus in 4 sera of 150 patients clinically suspected of Ebola virus disease during the Ebola Virus Disease (EVD) outbreak in West Africa with the use of serological and molecular test assays. Sequence data was successfully generated for DENV-3 and phylogenetic analysis of the envelope gene showed that the DENV-3 sequences had close homology with DENV-3 sequences from Senegal and India. This study documents molecular evidence of an indigenous Dengue fever viral infection in Ghana and therefore necessitates the need to have an efficient surveillance system to rapidly detect and control the dissemination of the different serotypes in the population which has the potential to cause outbreaks of dengue hemorrhagic fevers.


Asunto(s)
Virus del Dengue/genética , Dengue , Ebolavirus/genética , Fiebre Hemorrágica Ebola , Dengue/epidemiología , Dengue/genética , Dengue/virología , Brotes de Enfermedades , Femenino , Ghana/epidemiología , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/genética , Fiebre Hemorrágica Ebola/virología , Humanos , Masculino
8.
Environ Sci Pollut Res Int ; 24(20): 17187-17205, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28589271

RESUMEN

Monitoring of pesticide residues in food commodities of plant origin is part of the regular controls on food to safeguard consumer's health. This study reports for the first time in Ghana a 3-year (2010-2012) monitoring of pesticide contamination of fruits and vegetables and their health implications. A total of 3483 samples were purchased in notable markets within Accra Metropolis and analysed for pesticide residues, employing the modified quick, easy, cheap, effective, rugged and safe analytical procedure. The results indicated that almost all the fruits and vegetables studied had residues above maximum residue limits (MRLs). The commodities with the greatest concentrations exceeding the European Union (EU) MRLs were long green beans (60.6%) and lettuce (57.1%) with watermelon (10%) and green pepper (8.6%) having the least. The relative occurrence of the pesticides was fenvalerate 11.3%, fenitrothion 5.6%, lambda-cyhalothrin 3.6%, dimethoate 3.2%, permethrin 2.7% and deltamethrin 2.2%. These results will serve as a baseline on which annual or other long-term studies could be compared with, thus emphasizing the need for continuous monitoring programmes to regulate trends of pesticide residues in fruits and vegetables to safeguard the consumers' health.


Asunto(s)
Contaminación de Alimentos , Frutas , Residuos de Plaguicidas/análisis , Verduras , Ghana
9.
J Environ Sci Health B ; 50(8): 560-70, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26065516

RESUMEN

In this study, "Quick, Easy, Cheap, Effective, Rugged and Safe" 'QuEChERS' method was modified for the determination of 36 pesticides fortified at (0.01-1.0) mg kg(-1) in three vegetables and a fruit (lettuce, carrot, tomatoes and pineapples respectively) from Ghana. The method involved extraction with acetonitrile, phase separation with primary secondary amine and magnesium sulfate; the final injection solution was reconstituted in ethyl acetate. Organochlorine and synthetic pyrethroids residues were detected with electron capture detector whereas organophosphorus, pulsed flame photometric detector was used. The recoveries at different concentration levels (0.01, 0.1 and 1.0 mg kg(-1)) were in the range of 83% and 93% with relative standard deviation ranging from 2% to 10% (n = 5) and the coefficient of determination (R(2)) was greater than 0.99 for all the 36 pesticides. The method was successfully tested on 120 real samples from Accra markets and this proved to be useful for monitoring purposes particularly in laboratories that have no gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry.


Asunto(s)
Ananas/química , Cromatografía de Gases/métodos , Contaminación de Alimentos/análisis , Plaguicidas/análisis , Verduras/química , Acetonitrilos/química , Cromatografía de Gases/instrumentación , Cromatografía de Gases/normas , Daucus carota/química , Electrones , Diseño de Equipo , Análisis de los Alimentos/métodos , Ghana , Lactuca/química , Solanum lycopersicum/química , Residuos de Plaguicidas/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA