Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Nano Lett ; 24(20): 6031-6037, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38717626

RESUMEN

Manipulating the polarization of light at the nanoscale is key to the development of next-generation optoelectronic devices. This is typically done via waveplates using optically anisotropic crystals, with thicknesses on the order of the wavelength. Here, using a novel ultrafast electron-beam-based technique sensitive to transient near fields at THz frequencies, we observe a giant anisotropy in the linear optical response in the semimetal WTe2 and demonstrate that one can tune the THz polarization using a 50 nm thick film, acting as a broadband wave plate with thickness 3 orders of magnitude smaller than the wavelength. The observed circular deflections of the electron beam are consistent with simulations tracking the trajectory of the electron beam in the near field of the THz pulse. This finding offers a promising approach to enable atomically thin THz polarization control using anisotropic semimetals and defines new approaches for characterizing THz near-field optical response at far-subwavelength length scales.

2.
Nano Lett ; 23(6): 2287-2294, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36898060

RESUMEN

Strong coupling between light and mechanical strain forms the foundation for next-generation optical micro- and nano-electromechanical systems. Such optomechanical responses in two-dimensional materials present novel types of functionalities arising from the weak van der Waals bond between atomic layers. Here, by using structure-sensitive megaelectronvolt ultrafast electron diffraction, we report the experimental observation of optically driven ultrafast in-plane strain in the layered group IV monochalcogenide germanium sulfide (GeS). Surprisingly, the photoinduced structural deformation exhibits strain amplitudes of order 0.1% with a 10 ps fast response time and a significant in-plane anisotropy between zigzag and armchair crystallographic directions. Rather than arising due to heating, experimental and theoretical investigations suggest deformation potentials caused by electronic density redistribution and converse piezoelectric effects generated by photoinduced electric fields are the dominant contributors to the observed dynamic anisotropic strains. Our observations define new avenues for ultrafast optomechanical control and strain engineering within functional devices.

3.
Nature ; 565(7737): 61-66, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30602749

RESUMEN

Topological quantum materials exhibit fascinating properties1-3, with important applications for dissipationless electronics and fault-tolerant quantum computers4,5. Manipulating the topological invariants in these materials would allow the development of topological switching applications analogous to switching of transistors6. Lattice strain provides the most natural means of tuning these topological invariants because it directly modifies the electron-ion interactions and potentially alters the underlying crystalline symmetry on which the topological properties depend7-9. However, conventional means of applying strain through heteroepitaxial lattice mismatch10 and dislocations11 are not extendable to controllable time-varying protocols, which are required in transistors. Integration into a functional device requires the ability to go beyond the robust, topologically protected properties of materials and to manipulate the topology at high speeds. Here we use crystallographic measurements by relativistic electron diffraction to demonstrate that terahertz light pulses can be used to induce terahertz-frequency interlayer shear strain with large strain amplitude in the Weyl semimetal WTe2, leading to a topologically distinct metastable phase. Separate nonlinear optical measurements indicate that this transition is associated with a symmetry change to a centrosymmetric, topologically trivial phase. We further show that such shear strain provides an ultrafast, energy-efficient way of inducing robust, well separated Weyl points or of annihilating all Weyl points of opposite chirality. This work demonstrates possibilities for ultrafast manipulation of the topological properties of solids and for the development of a topological switch operating at terahertz frequencies.

4.
J Chem Phys ; 142(21): 212412, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-26049432

RESUMEN

In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.

5.
Rev Sci Instrum ; 85(8): 083109, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25173248

RESUMEN

A novel dual-frequency two-dimensional infrared instrument is designed and built that permits three-pulse heterodyned echo measurements of any cross-peak within a spectral range from 800 to 4000 cm(-1) to be performed in a fully automated fashion. The superior sensitivity of the instrument is achieved by a combination of spectral interferometry, phase cycling, and closed-loop phase stabilization accurate to ~70 as. The anharmonicity of smaller than 10(-4) cm(-1) was recorded for strong carbonyl stretching modes using 800 laser shot accumulations. The novel design of the phase stabilization scheme permits tuning polarizations of the mid-infrared (m-IR) pulses, thus supporting measurements of the angles between vibrational transition dipoles. The automatic frequency tuning is achieved by implementing beam direction stabilization schemes for each m-IR beam, providing better than 50 µrad beam stability, and novel scheme for setting the phase-matching geometry for the m-IR beams at the sample. The errors in the cross-peak amplitudes associated with imperfect phase matching conditions and alignment are found to be at the level of 20%. The instrument can be used by non-specialists in ultrafast spectroscopy.

6.
Opt Express ; 22(6): 6801-9, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24664028

RESUMEN

A compact laser beam direction stabilization scheme is developed that provides the angular stability of better than 50 µrad over a wide range of frequencies from 800 to 4000 cm-1. The schematic is fully automated and features a single MCT quadrant detector. The schematic was tested to stabilize directions of the two IR beams used for dual-frequency two-dimensional infrared (2DIR) measurements and showed excellent results: automatic tuning of the beam direction allowed achieving the alignment quality within 10% of the optimal alignment obtained manually. The schematic can be easily implemented to any nonlinear spectroscopic measurements in the mid-IR spectral region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA