Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Mol Pharm ; 17(8): 2809-2820, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32579369

RESUMEN

B29Nε-lithocholyl-γ-l-ßGlu-desB30 human insulin [NN344] belongs to a group of insulins with fatty acid or sterol modifications. These insulin analogues have been found to form subcutaneous depots upon injection and hereby have a protracted release profile in vivo. In the present study, B29Nε-lithocholyl-γ-l-Glu-desB30 human insulin was investigated using in-solution small-angle X-ray scattering (SAXS) at chemical conditions designed to mimic three stages during treatment in vivo: in-vial/pen, postinjection, and longer times after injection. We found that the specific insulin analogue formed a mixture of mono- and dihexamers under in-vial/pen conditions of low salt and stabilizing phenol. At postinjection, conditions mimicking a subcutaneous depot, B29Nε-lithocholyl-γ-l-Glu-desB30 human insulin, formed very long straight soluble hexamer-based rods stacked along the Zn(II)-axis. The self-assembly was triggered by an increase in salt concentration when going from vial to physiological conditions. Mimicking longer times after injection and the additional removal of phenol caused the length of the rods to decrease significantly. Finally, we found that the self-assembly could be controlled by varying the amount of modification at the interaction interface by making mixed hexamers of B29Nε-lithocholyl-γ-l-Glu-desB30 and desB30 human insulin. This opens extra possibilities for controlling the release profile of very-long-acting insulins.


Asunto(s)
Insulina/análogos & derivados , Insulina/química , Preparaciones de Acción Retardada/química , Humanos , Fenol/química , Sales (Química)/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Rayos X , Zinc/química
2.
J Synchrotron Radiat ; 25(Pt 2): 570-579, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29488939

RESUMEN

The FemtoMAX beamline facilitates studies of the structural dynamics of materials. Such studies are of fundamental importance for key scientific problems related to programming materials using light, enabling new storage media and new manufacturing techniques, obtaining sustainable energy by mimicking photosynthesis, and gleaning insights into chemical and biological functional dynamics. The FemtoMAX beamline utilizes the MAX IV linear accelerator as an electron source. The photon bursts have a pulse length of 100 fs, which is on the timescale of molecular vibrations, and have wavelengths matching interatomic distances (Å). The uniqueness of the beamline has called for special beamline components. This paper presents the beamline design including ultrasensitive X-ray beam-position monitors based on thin Ce:YAG screens, efficient harmonic separators and novel timing tools.

3.
Angew Chem Int Ed Engl ; 55(7): 2378-81, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26762534

RESUMEN

Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through coordination with two different metal ions. Selective attachment of an abiotic 2,2'-bipyridine (bipy) ligand to HI, yielding HI-bipy, enabled Zn(II)-binding hexamers to SA into trimers of hexamers, [[HI-bipy]6]3, driven by octahedral coordination to a Fe(II)  ion. The structures were studied in solution by small-angle X-ray scattering and on surfaces with AFM. The abiotic metal ligand had a higher affinity for Fe(II) than Zn(II)  ions, enabling control of the hexamer formation with Zn(II) and the formation of trimers of hexamers with Fe(II)  ions. This precise control of protein SA to give oligomers of oligomers provides nanoscale structures with potential applications in nanomedicine.


Asunto(s)
Compuestos Ferrosos/química , Insulina/química , Nanoestructuras , Zinc/química , Secuencia de Aminoácidos , Microscopía de Fuerza Atómica , Modelos Moleculares , Datos de Secuencia Molecular
4.
Chembiochem ; 16(13): 1905-1918, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26147795

RESUMEN

De novo design and chemical synthesis of proteins and of other artificial structures that mimic them is a central strategy for understanding protein folding and for accessing proteins with new functions. We have previously described carbohydrates that act as templates for the assembly of artificial proteins, so-called carboproteins. The hypothesis is that the template preorganizes the secondary structure elements and directs the formation of a tertiary structure, thus achieving structural economy in the combination of peptide, linker, and template. We speculate that the structural information from the template could facilitate protein folding. Here we report the design and synthesis of three-helix-bundle carboproteins on deoxyhexopyranosides. The carboproteins were analyzed by CD, analytical ultracentrifugation (AUC), small-angle X-ray scattering (SAXS), and NMR spectroscopy, and this revealed the formation of the first compact and folded monomeric carboprotein, distinctly different from a molten globule. En route to this carboprotein we observed a clear effect originating from the template on protein folding.

5.
J Pept Sci ; 19(5): 283-92, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23505212

RESUMEN

α-Helical coiled coil structures, which are noncovalently associated heptad repeat peptide sequences, are ubiquitous in nature. Similar amphipathic repeat sequences have also been found in helix-containing proteins and have played a central role in de novo design of proteins. In addition, they are promising tools for the construction of nanomaterials. Small-angle X-ray scattering (SAXS) has emerged as a new biophysical technique for elucidation of protein topology. Here, we describe a systematic study of the self-assembly of a small ensemble of coiled coil sequences using SAXS and analytical ultracentrifugation (AUC), which was correlated with molecular dynamics simulations. Our results show that even minor sequence changes have an effect on the folding topology and the self-assembly and that these differences can be observed by a combination of AUC, SAXS, and circular dichroism spectroscopy. A small difference in these methods was observed, as SAXS for one peptide and revealed the presence of a population of longer aggregates, which was not observed by AUC.


Asunto(s)
Péptidos/química , Estructura Secundaria de Proteína , Secuencias Repetitivas de Aminoácido , Ultracentrifugación , Dicroismo Circular , Modelos Moleculares , Péptidos/síntesis química , Pliegue de Proteína , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Espectroscopía de Absorción de Rayos X , Rayos X
6.
Langmuir ; 28(33): 12159-70, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22853842

RESUMEN

Precise control of the oligomeric state of proteins is of central importance for biological function and for the properties of biopharmaceutical drugs. Here, the self-assembly of 2,2'-bipyridine conjugated monomeric insulin analogues, induced through coordination to divalent metal ions, was studied. This protein drug system was designed to form non-native homo-oligomers through selective coordination of two divalent metal ions, Fe(II) and Zn(II), respectively. The insulin type chosen for this study is a variant designed for a reduced tendency toward native dimer formation at physiological concentrations. A small-angle X-ray scattering analysis of the bipyridine-modified insulin system confirmed an organization into a novel well-ordered structure based on insulin trimers, as induced by the addition of Fe(II). In contrast, unmodified monomeric insulin formed larger and more randomly structured assemblies upon addition of Fe(II). The addition of Zn(II), on the other hand, led to the formation of small quantities of insulin hexamers for both the bipyridine-modified and the unmodified monomeric insulin. Interestingly, the location of the bipyridine-modification significantly affects the tendency to hexamer formation as compared to the unmodified insulin. Our study shows how combining a structural study and chemical design can be used to obtain molecular understanding and control of the self-assembly of a protein drug. This knowledge may eventually be employed to develop an optimized in vivo drug release profile.


Asunto(s)
Insulina/química , Hierro/farmacología , Multimerización de Proteína/efectos de los fármacos , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Zinc/farmacología , 2,2'-Dipiridil/química , Secuencia de Aminoácidos , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
7.
Langmuir ; 28(1): 593-603, 2012 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-22129241

RESUMEN

The self-assembly of biopharmaceutical peptides into multimeric, nanoscale objects, as well as their disassembly to monomers, is central for their mode of action. Here, we describe a bioorthogonal strategy, using a non-native recognition principle, for control of protein self-assembly based on intermolecular fluorous interactions and demonstrate it for the small protein insulin. Perfluorinated alkyl chains of varying length were attached to desB30 human insulin by acylation of the ε-amine of the side-chain of LysB29. The insulin analogues were formulated with Zn(II) and phenol to form hexamers. The self-segregation of fluorous groups directed the insulin hexamers to self-assemble. The structures of the systems were investigated by circular dichroism (CD) spectroscopy and synchrotron small-angle X-ray scattering. Also, the binding affinity to the insulin receptor was measured. Interestingly, varying the length of the perfluoroalkyl chain provided three different scenarios for self-assembly; the short chains hardly affected the native hexameric structure, the medium-length chains induced fractal-like structures with the insulin hexamer as the fundamental building block, while the longest chains lead to the formation of structures with local cylindrical geometry. This hierarchical self-assembly system, which combines Zn(II) mediated hexamer formation with fluorous interactions, is a promising tool to control the formation of high molecular weight complexes of insulin and potentially other proteins.


Asunto(s)
Insulina/química , Dicroismo Circular , Humanos , Espectroscopía de Resonancia Magnética , Conformación Molecular , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA