Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Blood ; 143(11): 1049-1054, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38052031

RESUMEN

ABSTRACT: We show that red cell exchange (RCE) treats hyperleukocytosis in acute leukemia. RCE provided similar leukoreduction to standard therapeutic leukoreduction and could be superior in patients with severe anemia or monocytic leukemias or when requiring rapid treatment.


Asunto(s)
Leucemia Monocítica Aguda , Leucemia Mieloide Aguda , Leucostasis , Adulto , Humanos , Leucostasis/terapia , Leucemia Mieloide Aguda/terapia , Leucemia Monocítica Aguda/terapia , Enfermedad Aguda , Leucaféresis , Leucocitosis/terapia
2.
Pathog Immun ; 8(1): 161-169, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38155941

RESUMEN

The inaugural FASEB HIV Reservoirs and Immune Control Conference brought researchers together from across the globe to discuss reservoir dynamics in clinical cohorts. It extended over 4 days in the seaside town of Malahide, Ireland. The scientific sessions covered a broad range of topics, including: 1) HIV pathogenesis and control, 2) reservoirs and viral expression, 3) pediatric reservoirs, 4) innate immunity and B cell responses, 5) environmental factors affecting pathogenesis, 6) loss of virologic control, and 7) HIV-2. The following article provides a brief summary of the meeting proceedings and includes a supplementary document with the meeting abstracts.

3.
Cell ; 186(22): 4851-4867.e20, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37848036

RESUMEN

Post-acute sequelae of COVID-19 (PASC, "Long COVID") pose a significant global health challenge. The pathophysiology is unknown, and no effective treatments have been found to date. Several hypotheses have been formulated to explain the etiology of PASC, including viral persistence, chronic inflammation, hypercoagulability, and autonomic dysfunction. Here, we propose a mechanism that links all four hypotheses in a single pathway and provides actionable insights for therapeutic interventions. We find that PASC are associated with serotonin reduction. Viral infection and type I interferon-driven inflammation reduce serotonin through three mechanisms: diminished intestinal absorption of the serotonin precursor tryptophan; platelet hyperactivation and thrombocytopenia, which impacts serotonin storage; and enhanced MAO-mediated serotonin turnover. Peripheral serotonin reduction, in turn, impedes the activity of the vagus nerve and thereby impairs hippocampal responses and memory. These findings provide a possible explanation for neurocognitive symptoms associated with viral persistence in Long COVID, which may extend to other post-viral syndromes.


Asunto(s)
Síndrome Post Agudo de COVID-19 , Serotonina , Humanos , COVID-19/complicaciones , Progresión de la Enfermedad , Inflamación , Síndrome Post Agudo de COVID-19/sangre , Síndrome Post Agudo de COVID-19/patología , Serotonina/sangre , Virosis
4.
Artículo en Inglés | MEDLINE | ID: mdl-37126090

RESUMEN

Since the first HIV-cured person was reported in 2009, a strong interest in developing highly sensitive HIV and SIV reservoir assays has emerged. In particular, the question arose about the comparative value of state-of-the-art assays to measure and characterize the HIV reservoir, and how these assays can be applied to accurately detect changes in the reservoir during efforts to develop a cure for HIV infection. Second, it is important to consider the impact on the outcome of clinical trials if these relatively new HIV reservoir assays are incorporated into clinical trial endpoints and/or used for clinical decision-making. To understand the advantages and limitations and the regulatory implications of HIV reservoir assays, the National Institute of Allergy and Infectious Diseases (NIAID) sponsored and convened a meeting on September 16, 2022, to discuss the state of knowledge concerning these questions and best practices for selecting HIV reservoir assays for a particular research question or clinical trial protocol.

5.
Pathog Immun ; 8(2): 37-58, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38292079

RESUMEN

Background: The primary hurdle to curing HIV is due to the establishment of a reservoir early in infection. In an effort to find new treatment strategies, we and others have focused on understanding the selection pressures exerted on the reservoir by studying how proviral sequences change over time. Methods: To gain insights into the dynamics of the HIV reservoir we analyzed longitudinal near full-length sequences from 7 people living with HIV between 1 and 20 years following the initiation of antiretroviral treatment. We used this data to employ Bayesian mixed effects models to characterize the decay of the reservoir using single-phase and multiphasic decay models based on near full-length sequencing. In addition, we developed a machine-learning approach utilizing logistic regression to identify elements within the HIV genome most associated with proviral decay and persistence. By systematically analyzing proviruses that are deleted for a specific element, we gain insights into their role in reservoir contraction and expansion. Results: Our analyses indicate that biphasic decay models of intact reservoir dynamics were better than single-phase models with a stronger statistical fit. Based on the biphasic decay pattern of the intact reservoir, we estimated the half-lives of the first and second phases of decay to be 18.2 (17.3 to 19.2, 95%CI) and 433 (227 to 6400, 95%CI) months, respectively.In contrast, the dynamics of defective proviruses differed favoring neither model definitively, with an estimated half-life of 87.3 (78.1 to 98.8, 95% CI) months during the first phase of the biphasic model. Machine-learning analysis of HIV genomes at the nucleotide level revealed that the presence of the splice donor site D1 was the principal genomic element associated with contraction. This role of D1 was then validated in an in vitro system. Using the same approach, we additionally found supporting evidence that HIV nef may confer a protective advantage for latently infected T cells while tat was associated with clonal expansion. Conclusions: The nature of intact reservoir decay suggests that the long-lived HIV reservoir contains at least 2 distinct compartments. The first compartment decays faster than the second compartment. Our machine-learning analysis of HIV proviral sequences reveals specific genomic elements are associated with contraction while others are associated with persistence and expansion. Together, these opposing forces shape the reservoir over time.

6.
Nat Biomed Eng ; 6(2): 118-128, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35190680

RESUMEN

Chimaeric antigen receptor (CAR) T cells can generate durable clinical responses in B-cell haematologic malignancies. The manufacturing of these T cells typically involves their activation, followed by viral transduction and expansion ex vivo for at least 6 days. However, the activation and expansion of CAR T cells leads to their progressive differentiation and the associated loss of anti-leukaemic activity. Here we show that functional CAR T cells can be generated within 24 hours from T cells derived from peripheral blood without the need for T-cell activation or ex vivo expansion, and that the efficiency of viral transduction in this process is substantially influenced by the formulation of the medium and the surface area-to-volume ratio of the culture vessel. In mouse xenograft models of human leukaemias, the rapidly generated non-activated CAR T cells exhibited higher anti-leukaemic in vivo activity per cell than the corresponding activated CAR T cells produced using the standard protocol. The rapid manufacturing of CAR T cells may reduce production costs and broaden their applicability.


Asunto(s)
Leucemia , Receptores Quiméricos de Antígenos , Animales , Humanos , Inmunoterapia Adoptiva/métodos , Ratones , Linfocitos T
7.
Clin Chem ; 68(1): 230-239, 2021 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-34383886

RESUMEN

BACKGROUND: High-sensitivity severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antigen assays are desirable to mitigate false negative results. Limited data are available to quantify and track SARS-CoV-2 antigen burden in respiratory samples from different populations. METHODS: We developed the Microbubbling SARS-CoV-2 Antigen Assay (MSAA) with smartphone readout, with a limit of detection of 0.5 pg/mL (10.6 fmol/L) nucleocapsid antigen or 4000 copies/mL inactivated SARS-CoV-2 virus in nasopharyngeal (NP) swabs. We developed a computer vision and machine learning-based automatic microbubble image classifier to accurately identify positives and negatives and quantified and tracked antigen dynamics in intensive care unit coronavirus disease 2019 (COVID-19) inpatients and immunocompromised COVID-19 patients. RESULTS: Compared to qualitative reverse transcription-polymerase chain reaction methods, the MSAA demonstrated a positive percentage agreement of 97% (95% CI 92%-99%) and a negative percentage agreement of 97% (95% CI 94%-100%) in a clinical validation study with 372 residual clinical NP swabs. In immunocompetent individuals, the antigen positivity rate in swabs decreased as days-after-symptom-onset increased, despite persistent nucleic acid positivity. Antigen was detected for longer and variable periods of time in immunocompromised patients with hematologic malignancies. Total microbubble volume, a quantitative marker of antigen burden, correlated inversely with cycle threshold values and days-after-symptom-onset. Viral sequence variations were detected in patients with long duration of high antigen burden. CONCLUSIONS: The MSAA enables sensitive and specific detection of acute infections and quantification and tracking of antigen burden and may serve as a screening method in longitudinal studies to identify patients who are likely experiencing active rounds of ongoing replication and warrant close viral sequence monitoring.


Asunto(s)
Antígenos Virales/análisis , Prueba de COVID-19/métodos , COVID-19 , Teléfono Inteligente , COVID-19/diagnóstico , Humanos , Aprendizaje Automático , SARS-CoV-2 , Sensibilidad y Especificidad
8.
JCI Insight ; 6(16)2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-34228640

RESUMEN

Historically, naive cells have been considered inconsequential to HIV persistence. Here, we compared the contributions of naive and memory cells to the reservoirs of individuals with a spectrum of reservoir sizes and variable immunological control. We performed proviral sequencing of approximately 6000 proviruses from cellular subsets of 5 elite controllers (ECs) off antiretroviral therapy (ART) and 5 chronic progressors (CPs) on ART. The levels of naive infection were barely detectable in ECs and approximately 300-fold lower compared with those in CPs. Moreover, the ratio of infected naive to memory cells was significantly lower in ECs. Overall, the naive infection level increased as reservoir size increased, such that naive cells were a major contributor to the intact reservoir of CPs, whose reservoirs were generally very diverse. In contrast, the reservoirs of ECs were dominated by proviral clones. Critically, the fraction of proviral clones increased with cell differentiation, with naive infection predicting reservoir diversity. Longitudinal sequencing revealed that the reservoir of ECs was less dynamic compared with that of CPs. Naive cells play a critical role in HIV persistence. Their infection level predicts reservoir size and diversity. Moreover, the diminishing diversity of the reservoir as cellular subsets mature suggests that naive T cells repopulate the memory compartment and that direct infection of naive T cells occurs in vivo.


Asunto(s)
Antirretrovirales/uso terapéutico , Infecciones por VIH/inmunología , VIH-1/inmunología , Infección Persistente/inmunología , Linfocitos T/virología , Progresión de la Enfermedad , Controladores de Élite , Infecciones por VIH/sangre , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/aislamiento & purificación , Humanos , Infección Persistente/sangre , Infección Persistente/tratamiento farmacológico , Infección Persistente/virología , Linfocitos T/inmunología , Carga Viral
9.
medRxiv ; 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33791710

RESUMEN

Background: Little is known about the dynamics of SARS-CoV-2 antigen burden in respiratory samples in different patient populations at different stages of infection. Current rapid antigen tests cannot quantitate and track antigen dynamics with high sensitivity and specificity in respiratory samples. Methods: We developed and validated an ultra-sensitive SARS-CoV-2 antigen assay with smartphone readout using the Microbubbling Digital Assay previously developed by our group, which is a platform that enables highly sensitive detection and quantitation of protein biomarkers. A computer vision-based algorithm was developed for microbubble smartphone image recognition and quantitation. A machine learning-based classifier was developed to classify the smartphone images based on detected microbubbles. Using this assay, we tracked antigen dynamics in serial swab samples from COVID patients hospitalized in ICU and immunocompromised COVID patients. Results: The limit of detection (LOD) of the Microbubbling SARS-CoV-2 Antigen Assay was 0.5 pg/mL (10.6 fM) recombinant nucleocapsid (N) antigen or 4000 copies/mL inactivated SARS-CoV-2 virus in nasopharyngeal (NP) swabs, comparable to many rRT-PCR methods. The assay had high analytical specificity towards SARS-CoV-2. Compared to EUA-approved rRT-PCR methods, the Microbubbling Antigen Assay demonstrated a positive percent agreement (PPA) of 97% (95% confidence interval (CI), 92-99%) in symptomatic individuals within 7 days of symptom onset and positive SARS-CoV-2 nucleic acid results, and a negative percent agreement (NPA) of 97% (95% CI, 94-100%) in symptomatic and asymptomatic individuals with negative nucleic acid results. Antigen positivity rate in NP swabs gradually decreased as days-after-symptom-onset increased, despite persistent nucleic acid positivity of the same samples. The computer vision and machine learning-based automatic microbubble image classifier could accurately identify positives and negatives, based on microbubble counts and sizes. Total microbubble volume, a potential marker of antigen burden, correlated inversely with Ct values and days-after-symptom-onset. Antigen was detected for longer periods of time in immunocompromised patients with hematologic malignancies, compared to immunocompetent individuals. Simultaneous detectable antigens and nucleic acids may indicate the presence of replicating viruses in patients with persistent infections. Conclusions: The Microbubbling SARS-CoV-2 Antigen Assay enables sensitive and specific detection of acute infections, and quantitation and tracking of antigen dynamics in different patient populations at various stages of infection. With smartphone compatibility and automated image processing, the assay is well-positioned to be adapted for point-of-care diagnosis and to explore the clinical implications of antigen dynamics in future studies.

10.
JCI Insight ; 5(20)2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33055422

RESUMEN

Despite the efficacy of antiretroviral therapy (ART), HIV persists in a latent form and remains a hurdle to eradication. CD4+ T lymphocytes harbor the majority of the HIV reservoir, but the role of individual subsets remains unclear. CD4+ T cells were sorted into central, transitional, effector memory, and naive T cells. We measured HIV DNA and performed proviral sequencing of more than 1900 proviruses in 2 subjects at 2 and 9 years after ART initiation to estimate the contribution of each subset to the reservoir. Although our study was limited to 2 subjects, we obtained comparable findings with publicly available sequences. While the HIV integration levels were lower in naive compared with memory T cells, naive cells were a major contributor to the intact proviral reservoir. Notably, proviral sequences isolated from naive cells appeared to be unique, while those retrieved from effector memory cells were mainly clonal. The number of clones increased as cells differentiated from a naive to an effector memory phenotype, suggesting naive cells repopulate the effector memory reservoir as previously shown for central memory cells. Naive T cells contribute substantially to the intact HIV reservoir and represent a significant hurdle for HIV eradication.


Asunto(s)
Linfocitos T CD4-Positivos/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Linfocitos T/inmunología , Adulto , Antirretrovirales/administración & dosificación , Antirretrovirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , ADN Viral/genética , ADN Viral/inmunología , ADN Viral/aislamiento & purificación , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Filogenia , Provirus/efectos de los fármacos , Provirus/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/virología , Carga Viral/efectos de los fármacos , Carga Viral/inmunología
11.
EBioMedicine ; 59: 102945, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32827942

RESUMEN

BACKGROUND: A comprehensive understanding of host factors modulated by the antiviral cytokine interferon-α (IFNα) is imperative for harnessing its beneficial effects while avoiding its detrimental side-effects during HIV infection. Cytokines modulate host glycosylation which plays a critical role in mediating immunological functions. However, the impact of IFNα on host glycosylation has never been characterized. METHODS: We assessed the impact of pegylated IFNα2a on IgG glycome, as well as CD8+ T and NK cell-surface glycomes, of 18 HIV-infected individuals on suppressive antiretroviral therapy. We linked these glycomic signatures to changes in inflammation, CD8+ T and NK cell phenotypes, and HIV DNA. FINDINGS: We identified significant interactions that support a model in which a) IFNα increases the proportion of pro-inflammatory, bisecting GlcNAc glycans (known to enhance FcγR binding) within the IgG glycome, which in turn b) increases inflammation, which c) leads to poor CD8+ T cell phenotypes and poor IFNα-mediated reduction of HIV DNA. Examining cell-surface glycomes, IFNα increases levels of the immunosuppressive GalNAc-containing glycans (T/Tn antigens) on CD8+ T cells. This induction is associated with lower HIV-gag-specific CD8+ T cell functions. Last, IFNα increases levels of fucose on NK cells. This induction is associated with higher NK functions upon K562 stimulation. INTERPRETATION: IFNα causes host glycomic alterations that are known to modulate immunological responses. These alterations are associated with both detrimental and beneficial consequences of IFNα. Manipulating host glycomic interactions may represent a strategy for enhancing the positive effects of IFNα while avoiding its detrimental side-effects. FUNDING: NIH grants R21AI143385, U01AI110434.


Asunto(s)
Antivirales/farmacología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Interferón-alfa/farmacología , Terapia Antirretroviral Altamente Activa , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Citocinas/metabolismo , Glicosilación/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Mediadores de Inflamación/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Recuento de Linfocitos , Polisacáridos/metabolismo
12.
J Virol ; 94(9)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32051279

RESUMEN

Next-generation sequencing (NGS) represents a powerful tool to unravel the genetic make-up of the HIV reservoir, but limited data exist on its use in vitro Moreover, most NGS studies do not separate integrated from unintegrated DNA, even though selection pressures on these two forms should be distinct. We reasoned we could use NGS to compare the infection of resting and activated CD4 T cells in vitro to address how the metabolic state affects reservoir formation and dynamics. To address these questions, we obtained HIV sequences 2, 4, and 8 days after NL4-3 infection of metabolically activated and quiescent CD4 T cells (cultured with 2 ng/ml interleukin-7). We compared the composition of integrated and total HIV DNA by isolating integrated HIV DNA using pulsed-field electrophoresis before performing sequencing. After a single-round infection, the majority of integrated HIV DNA was intact in both resting and activated T cells. The decay of integrated intact proviruses was rapid and similar in both quiescent and activated T cells. Defective forms accumulated relative to intact ones analogously to what is observed in vivo Massively deleted viral sequences formed more frequently in resting cells, likely due to lower deoxynucleoside triphosphate (dNTP) levels and the presence of multiple restriction factors. To our surprise, the majority of these deleted sequences did not integrate into the human genome. The use of NGS to study reservoir dynamics in vitro provides a model that recapitulates important aspects of reservoir dynamics. Moreover, separating integrated from unintegrated HIV DNA is important in some clinical settings to properly study selection pressures.IMPORTANCE The major implication of our work is that the decay of intact proviruses in vitro is extremely rapid, perhaps as a result of enhanced expression. Gaining a better understanding of why intact proviruses decay faster in vitro might help the field identify strategies to purge the reservoir in vivo When used wisely, in vitro models are a powerful tool to study the selective pressures shaping the viral landscape. Our finding that massively deleted sequences rarely succeed in integrating has several ramifications. It demonstrates that the total HIV DNA can differ substantially in character from the integrated HIV DNA under certain circumstances. The presence of unintegrated HIV DNA has the potential to obscure selection pressures and confound the interpretation of clinical studies, especially in the case of trials involving treatment interruptions.


Asunto(s)
Infecciones por VIH/genética , VIH-1/genética , Provirus/genética , Linfocitos T CD4-Positivos/inmunología , ADN Viral/genética , Reservorios de Enfermedades/virología , Infecciones por VIH/virología , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Integración Viral/genética , Latencia del Virus/genética , Replicación Viral/genética
15.
Nat Commun ; 10(1): 728, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30760706

RESUMEN

After initiating antiretroviral therapy (ART), a rapid decline in HIV viral load is followed by a long period of undetectable viremia. Viral outgrowth assay suggests the reservoir continues to decline slowly. Here, we use full-length sequencing to longitudinally study the proviral landscape of four subjects on ART to investigate the selective pressures influencing the dynamics of the treatment-resistant HIV reservoir. We find intact and defective proviruses that contain genetic elements favoring efficient protein expression decrease over time. Moreover, proviruses that lack these genetic elements, yet contain strong donor splice sequences, increase relatively to other defective proviruses, especially among clones. Our work suggests that HIV expression occurs to a significant extent during ART and results in HIV clearance, but this is obscured by the expansion of proviral clones. Paradoxically, clonal expansion may also be enhanced by HIV expression that leads to splicing between HIV donor splice sites and downstream human exons.


Asunto(s)
Terapia Antirretroviral Altamente Activa , Antivirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH-1/efectos de los fármacos , Adulto , Femenino , Infecciones por VIH/virología , VIH-1/genética , VIH-1/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mutación , Filogenia , Provirus/clasificación , Provirus/efectos de los fármacos , Provirus/genética , Carga Viral/efectos de los fármacos , Viremia/prevención & control , Latencia del Virus/efectos de los fármacos
16.
Transfus Apher Sci ; 58(1): 100-106, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30616959

RESUMEN

BACKGROUND: In sickle cell disease (SCD), red blood cells (RBCs) containing hemoglobin S can be denser than RBCs containing wild-type hemoglobin, especially when dehydrated. We hypothesize that targeting denser RBCs during red blood cell (RBC) exchange for SCD could result in more efficient removal of dehydrated, sickled RBCs and preservation of non-sickled RBCs. STUDY DESIGN AND METHODS: Waste products from RBC exchanges for SCD were used as "simulated patients". One RBC volume was exchanged using ABO-compatible blood. The apheresis instrument was programmed to exchange the entire RBC layer by indicating the hematocrit (control), or the bottom half by indicating the hematocrit was half the hematocrit (experimental), with or without subsequent transfusion. Hemoglobin S levels, and complete blood counts were measured. RESULTS: Hemoglobin S levels were lower after the modified versus control RBC exchange (post-RBC exchange mean 4.96% and 11.27%); total hemoglobin S amounts were also lower (mean 19.27 and 58.29 mL of RBCs). Mean RBC density decreased after the modified RBC exchange by 8.86%. Hematocrit decreased in the modified RBC exchange by 36.37%, with partial correction by direct transfusion following a truncated RBC exchange. CONCLUSIONS: Targeting denser RBCs in RBC exchange enhanced hemoglobin S removal and decreased RBC density. Further development of this ex vivo model could potentially allow for: 1) improved reduction in hemoglobin S levels (allowing for longer periods between RBC exchange or maintained lower levels), or 2) achievement of previous goal hemoglobin S levels with fewer donor units (reducing alloimmunization risk and improving blood utilization).


Asunto(s)
Anemia de Células Falciformes/sangre , Transfusión de Eritrocitos/métodos , Humanos , Prueba de Estudio Conceptual
17.
J Clin Microbiol ; 56(12)2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30232127

RESUMEN

We utilized pulsed-field gel electrophoresis (PFGE) to purify high-molecular-weight DNA from HIV-infected cells. This purification, in combination with our previously described droplet digital PCR (ddPCR) assay, was used to develop a method to quantify proviral integrated HIV DNA free of lower-molecular-weight species of HIV DNA. Episomal 2-long-terminal-repeat (2-LTR) circles were completely cleared from HIV DNA samples. Technical replicates of the complete assay, starting with the same specimens, resulted in no statistical differences in quantification of integrated HIV gag sequences in cellular DNA from cells from HIV-infected subjects after prolonged treatment with antiretroviral therapy (ART). The PFGE ddPCR assay was compared to the Alu-gag quantitative PCR (qPCR) assay, the most widely used assay to measure proviral integrated HIV DNA. Spearman's rho nonparametric correlation determined PFGE ddPCR results to be positively correlated with Alu-gag qPCR results (r = 0.7052; P = 0.0273). In summary, PFGE ddPCR is a sensitive, reproducible, and robust method to measure proviral integrated HIV DNA and is theoretically more accurate than previously described assays, because it is a direct measure of integrated HIV DNA.


Asunto(s)
Electroforesis en Gel de Campo Pulsado , Infecciones por VIH/virología , VIH-1/genética , Provirus/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Integración Viral/fisiología , ADN Viral/genética , ADN Viral/aislamiento & purificación , Productos del Gen gag/genética , Duplicado del Terminal Largo de VIH/genética , Humanos , Leucocitos Mononucleares/virología , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Reproducibilidad de los Resultados
18.
PLoS Pathog ; 14(9): e1007257, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30180214

RESUMEN

HIV-1 can downregulate HLA-C on infected cells, using the viral protein Vpu, and the magnitude of this downregulation varies widely between primary HIV-1 variants. The selection pressures that result in viral downregulation of HLA-C in some individuals, but preservation of surface HLA-C in others are not clear. To better understand viral immune evasion targeting HLA-C, we have characterized HLA-C downregulation by a range of primary HIV-1 viruses. 128 replication competent viral isolates from 19 individuals with effective anti-retroviral therapy, show that a substantial minority of individuals harbor latent reservoir virus which strongly downregulates HLA-C. Untreated infections display no change in HLA-C downregulation during the first 6 months of infection, but variation between viral quasispecies can be detected in chronic infection. Vpu molecules cloned from plasma of 195 treatment naïve individuals in chronic infection demonstrate that downregulation of HLA-C adapts to host HLA genotype. HLA-C alleles differ in the pressure they exert for downregulation, and individuals with higher levels of HLA-C expression favor greater viral downregulation of HLA-C. Studies of primary and mutant molecules identify 5 residues in the transmembrane region of Vpu, and 4 residues in the transmembrane domain of HLA-C, which determine interactions between Vpu and HLA. The observed adaptation of Vpu-mediated downregulation to host genotype indicates that HLA-C alleles differ in likelihood of mediating a CTL response that is subverted by viral downregulation, and that preservation of HLA-C expression is favored in the absence of these responses. Finding that latent reservoir viruses can downregulate HLA-C could have implications for HIV-1 cure therapy approaches in some individuals.


Asunto(s)
Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH-1/patogenicidad , Antígenos HLA-C/genética , Secuencia de Aminoácidos , Reservorios de Enfermedades/virología , Regulación hacia Abajo , Variación Genética , Genotipo , Infecciones por VIH/virología , VIH-1/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas del Virus de la Inmunodeficiencia Humana/genética , Proteínas del Virus de la Inmunodeficiencia Humana/inmunología , Humanos , Evasión Inmune , Proteínas Reguladoras y Accesorias Virales/química , Proteínas Reguladoras y Accesorias Virales/genética , Proteínas Reguladoras y Accesorias Virales/inmunología
19.
J Virol ; 92(13)2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29643240

RESUMEN

HIV protease is known to cause cell death, which is dependent upon cleavage of procaspase 8. HIV protease cleavage of procaspase 8 generates Casp8p41, which directly binds Bak with nanomolar affinity, causing Bak activation and consequent cell death. Casp8p41 can also bind Bcl2 with nanomolar affinity, in which case cell death is averted. Central memory CD4 T cells express high levels of Bcl2, possibly explaining why those cells do not die when they reactivate HIV. Here, we determine that the Casp8p41-Bcl2 complex is polyubiquitinated and degraded by the proteasome. Ixazomib, a proteasome inhibitor in clinical use, blocks this pathway, increasing the abundance of Casp8p41 and causing more cells to die in a Casp8p41-dependent manner.IMPORTANCE The Casp8p41 pathway of cell death is unique to HIV-infected cells yet is blocked by Bcl2. Once bound by Bcl2, Casp8p41 is polyubiquitinated and degraded by the proteasome. Proteasome inhibition blocks degradation of Casp8p41, increasing Casp8p41 levels and causing more HIV-infected cells to die.


Asunto(s)
Apoptosis , Caspasa 8/metabolismo , Infecciones por VIH/metabolismo , Proteasa del VIH/metabolismo , VIH-1/enzimología , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD4-Positivos/patología , Linfocitos T CD4-Positivos/virología , Caspasa 8/genética , Infecciones por VIH/virología , Proteasa del VIH/genética , Humanos , Células Jurkat , Complejo de la Endopetidasa Proteasomal/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Replicación Viral
20.
Leukemia ; 32(7): 1529-1541, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29654266

RESUMEN

Viral vectors provide an efficient means for modification of eukaryotic cells, and their use is now commonplace in academic laboratories and industry for both research and clinical gene therapy applications. Lentiviral vectors, derived from the human immunodeficiency virus, have been extensively investigated and optimized over the past two decades. Third-generation, self-inactivating lentiviral vectors have recently been used in multiple clinical trials to introduce genes into hematopoietic stem cells to correct primary immunodeficiencies and hemoglobinopathies. These vectors have also been used to introduce genes into mature T cells to generate immunity to cancer through the delivery of chimeric antigen receptors (CARs) or cloned T-cell receptors. CAR T-cell therapies engineered using lentiviral vectors have demonstrated noteworthy clinical success in patients with B-cell malignancies leading to regulatory approval of the first genetically engineered cellular therapy using lentiviral vectors. In this review, we discuss several aspects of lentiviral vectors that will be of interest to clinicians, including an overview of lentiviral vector development, the current uses of viral vectors as therapy for primary immunodeficiencies and cancers, large-scale manufacturing of lentiviral vectors, and long-term follow-up of patients treated with gene therapy products.


Asunto(s)
Técnicas de Transferencia de Gen , Terapia Genética , Vectores Genéticos/genética , Lentivirus/genética , Animales , Estudios Clínicos como Asunto , Ingeniería Genética/métodos , Terapia Genética/métodos , Vectores Genéticos/biosíntesis , Humanos , Transducción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA