Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Clin Transl Med ; 14(4): e1648, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38602256

RESUMEN

BACKGROUND: Understanding how to modulate the microenvironment of tumors that are resistant to immune checkpoint inhibitors represents a major challenge in oncology.Here we investigate the ability of USP7 inhibitors to reprogram the tumor microenvironment (TME) by inhibiting secretion of vascular endothelial growth factor (VEGF) from fibroblasts. METHODS: To understand the role played by USP7 in the TME, we systematically evaluated the effects of potent, selective USP7 inhibitors on co-cultures comprising components of the TME, using human primary cells. We also evaluated the effects of USP7 inhibition on tumor growth inhibition in syngeneic models when dosed in combination with immune checkpoint inhibitors (ICIs). RESULTS: Abrogation of VEGF secretion from fibroblasts in response to USP7 inhibition resulted in inhibition of tumor neoangiogenesis and increased tumor recruitment of CD8-positive T-lymphocytes, leading to significantly improved sensitivity to immune checkpoint inhibitors. In syngeneic models, treatment with USP7 inhibitors led to striking tumor responses resulting in significantly improved survival. CONCLUSIONS: USP7-mediated reprograming of the TME is not linked to its previously characterized role in modulating MDM2 but does require p53 and UHRF1 in addition to the well-characterized VEGF transcription factor, HIF-1α. This represents a function of USP7 that is unique to fibroblasts, and which is not observed in cancer cells or other components of the TME. Given the potential for USP7 inhibitors to transform "immune desert" tumors into "immune responsive" tumors, this paves the way for a novel therapeutic strategy combining USP7 inhibitors with immune checkpoint inhibitors (ICIs).


Asunto(s)
Neoplasias , Peptidasa Específica de Ubiquitina 7 , Factor A de Crecimiento Endotelial Vascular , Humanos , Proteínas Potenciadoras de Unión a CCAAT/farmacología , Fibroblastos/metabolismo , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Microambiente Tumoral , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores
2.
Eur Thyroid J ; 13(2)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38471306

RESUMEN

Global warming is now universally acknowledged as being responsible for dramatic climate changes with rising sea levels, unprecedented temperatures, resulting fires and threatened widespread species loss. While these effects are extremely damaging, threatening the future of life on our planet, one unexpected and paradoxically beneficial consequence could be a significant contribution to global iodine supply. Climate change and associated global warming are not the primary causes of increased iodine supply, which results from the reaction of ozone (O3) arising from both natural and anthropogenic pollution sources with iodide (I-) present in the oceans and in seaweeds (macro- and microalgae) in coastal waters, producing gaseous iodine (I2). The reaction serves as negative feedback, serving a dual purpose, both diminishing ozone pollution in the lower atmosphere and thereby increasing I2. The potential of this I2 to significantly contribute to human iodine intake is examined in the context of I2 released in a seaweed-abundant coastal area. The bioavailability of the generated I2 offers a long-term possibility of increasing global iodine status and thereby promoting thyroidal health. It is hoped that highlighting possible changes in iodine bioavailability might encourage the health community to address this issue.


Asunto(s)
Yodo , Ozono , Algas Marinas , Humanos , Cambio Climático , Océanos y Mares , Ozono/análisis , Atmósfera
4.
NPJ Clim Atmos Sci ; 5(1): 99, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36530483

RESUMEN

Staggered-peak production (SP)-a measure to halt industrial production in the heating season-has been implemented in North China Plain to alleviate air pollution. We compared the variations of PM1 composition in Beijing during the SP period in the 2016 heating season (SPhs) with those in the normal production (NP) periods during the 2015 heating season (NPhs) and 2016 non-heating season (NPnhs) to investigate the effectiveness of SP. The PM1 mass concentration decreased from 70.0 ± 54.4 µg m-3 in NPhs to 53.0 ± 56.4 µg m-3 in SPhs, with prominent reductions in primary emissions. However, the fraction of nitrate during SPhs (20.2%) was roughly twice that during NPhs (12.7%) despite a large decrease of NOx, suggesting an efficient transformation of NOx to nitrate during the SP period. This is consistent with the increase of oxygenated organic aerosol (OOA), which almost doubled from NPhs (22.5%) to SPhs (43.0%) in the total organic aerosol (OA) fraction, highlighting efficient secondary formation during SP. The PM1 loading was similar between SPhs (53.0 ± 56.4 µg m-3) and NPnhs (50.7 ± 49.4 µg m-3), indicating a smaller difference in PM pollution between heating and non-heating seasons after the implementation of the SP measure. In addition, a machine learning technique was used to decouple the impact of meteorology on air pollutants. The deweathered results were comparable with the observed results, indicating that meteorological conditions did not have a large impact on the comparison results. Our study indicates that the SP policy is effective in reducing primary emissions but promotes the formation of secondary species.

5.
Sci Rep ; 12(1): 15715, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36127435

RESUMEN

The serine/threonine protein kinase AKT plays a pivotal role within the PI3K pathway in regulating cellular proliferation and apoptotic cellular functions, and AKT hyper-activation via gene amplification and/or mutation has been implicated in multiple human malignancies. There are 3 AKT isoenzymes (AKT1-3) which mediate critical, non-redundant functions. We present the discovery and development of ALM301, a novel, allosteric, sub-type selective inhibitor of AKT1/2. ALM301 binds in an allosteric pocket created by the combined movement of the PH domain and the catalytic domain, resulting in a DFG out conformation. ALM301 was shown to be highly selective against a panel of over 450 kinases and potently inhibited cellular proliferation. These effects were particularly pronounced in MCF-7 cells containing a PI3KCA mutation. Subsequent cellular downstream pathway analysis in this sensitive cell line revealed potent inhibition of pAKT signalling up to 48 h post dosing. ALM301 treatment was well tolerated in an MCF-7 xenograft model and led to a dose-dependent reduction in tumour growth. Enhanced efficacy was observed in combination with tamoxifen. In summary, ALM301 is a highly specific AKT 1/2 inhibitor with an excellent pharmacological profile suitable for further clinical development.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Inhibidores de la Angiogénesis , Humanos , Isoenzimas , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina , Tamoxifeno , Treonina
6.
Proc Natl Acad Sci U S A ; 119(32): e2201729119, 2022 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917351

RESUMEN

The gas-phase formation of new particles less than 1 nm in size and their subsequent growth significantly alters the availability of cloud condensation nuclei (CCN, >30-50 nm), leading to impacts on cloud reflectance and the global radiative budget. However, this growth cannot be accounted for by condensation of typical species driving the initial nucleation. Here, we present evidence that nucleated iodine oxide clusters provide unique sites for the accelerated growth of organic vapors to overcome the coagulation sink. Heterogeneous reactions form low-volatility organic acids and alkylaminium salts in the particle phase, while further oligomerization of small α-dicarbonyls (e.g., glyoxal) drives the particle growth. This identified heterogeneous mechanism explains the occurrence of particle production events at organic vapor concentrations almost an order of magnitude lower than those required for growth via condensation alone. A notable fraction of iodine associated with these growing particles is recycled back into the gas phase, suggesting an effective transport mechanism for iodine to remote regions, acting as a "catalyst" for nucleation and subsequent new particle production in marine air.

7.
J Geophys Res Atmos ; 127(10): e2021JD036355, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35860437

RESUMEN

The current understanding of the impact of natural cloud condensation nuclei (CCN) variability on cloud properties in marine air is low, thus contributing to climate prediction uncertainty. By analyzing cloud remote sensing observations (2009-2015) at Mace Head (west coast of Ireland), we show the oceanic biota impact on the microphysical properties of stratiform clouds over the Northeast Atlantic Ocean. During spring to summer (seasons of enhanced oceanic biological activity), clouds typically host a higher number of smaller droplets resulting from increased aerosol number concentration in the CCN relevant-size range. The induced increase in cloud droplet number concentration (+100%) and decrease in their radius (-14%) are comparable in magnitude to that generated by the advection of anthropogenically influenced air masses over the background marine boundary layer. Cloud water content and albedo respond to marine CCN perturbations with positive adjustments, making clouds brighter as the number of droplets increases. Cloud susceptibility to marine aerosols overlaps with a large variability of cloud macrophysical and optical properties primarily affected by the meteorological conditions. The above findings suggest the existence of a potential feedback mechanism between marine biota and the marine cloud-climate system.

8.
Environ Int ; 166: 107325, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35716508

RESUMEN

Organic aerosol (OA) is a key component of total submicron particulate matter (PM1), and comprehensive knowledge of OA sources across Europe is crucial to mitigate PM1 levels. Europe has a well-established air quality research infrastructure from which yearlong datasets using 21 aerosol chemical speciation monitors (ACSMs) and 1 aerosol mass spectrometer (AMS) were gathered during 2013-2019. It includes 9 non-urban and 13 urban sites. This study developed a state-of-the-art source apportionment protocol to analyse long-term OA mass spectrum data by applying the most advanced source apportionment strategies (i.e., rolling PMF, ME-2, and bootstrap). This harmonised protocol was followed strictly for all 22 datasets, making the source apportionment results more comparable. In addition, it enables quantification of the most common OA components such as hydrocarbon-like OA (HOA), biomass burning OA (BBOA), cooking-like OA (COA), more oxidised-oxygenated OA (MO-OOA), and less oxidised-oxygenated OA (LO-OOA). Other components such as coal combustion OA (CCOA), solid fuel OA (SFOA: mainly mixture of coal and peat combustion), cigarette smoke OA (CSOA), sea salt (mostly inorganic but part of the OA mass spectrum), coffee OA, and ship industry OA could also be separated at a few specific sites. Oxygenated OA (OOA) components make up most of the submicron OA mass (average = 71.1%, range from 43.7 to 100%). Solid fuel combustion-related OA components (i.e., BBOA, CCOA, and SFOA) are still considerable with in total 16.0% yearly contribution to the OA, yet mainly during winter months (21.4%). Overall, this comprehensive protocol works effectively across all sites governed by different sources and generates robust and consistent source apportionment results. Our work presents a comprehensive overview of OA sources in Europe with a unique combination of high time resolution (30-240 min) and long-term data coverage (9-36 months), providing essential information to improve/validate air quality, health impact, and climate models.

9.
Toxics ; 10(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35324746

RESUMEN

An Aerosol Chemical Speciation Monitor (ACSM) was deployed to investigate the temporal variability of non-refractory particulate matter (NR-PM1) in the coastal city of Galway, Ireland, from February to July 2016. Source apportionment of the organic aerosol (OA) was performed using the newly developed rolling PMF strategy and was compared with the conventional seasonal PMF. Primary OA (POA) factors apportioned by rolling and seasonal PMF were similar. POA factors of hydrocarbon-like OA (HOA), peat, wood, and coal were associated with domestic heating, and with an increased contribution to the OA mass in winter. Even in summer, sporadic heating events occurred with similar diurnal patterns to that in winter. Two oxygenated OA (OOA) factors were resolved, including more-oxygenated OOA and less-oxygenated OOA (i.e., MO-OOA and LO-OOA, accordingly) which were found to be the dominant OA factors during summer. On average, MO-OOA accounted for 62% of OA and was associated with long-range transport in summer. In summer, compared to rolling PMF, the conventional seasonal PMF over-estimated LO-OOA by nearly 100% while it underestimated MO-OOA by 30%. The results from this study show residential heating and long-range transport alternately dominate the submicron aerosol concentrations in this coastal city, requiring different mitigation strategies in different seasons.

10.
Air Qual Atmos Health ; 15(2): 221-234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34603555

RESUMEN

This study examines the regional impact of the COVID-19 lockdown restrictions on pollution in Ireland by comparing the 2020 measurements of ozone (O3), nitrogen dioxide (NO2), and particulate matter (PM) from monitoring stations around the country to the previous 3-year average. Results indicate that O3 was 5.6% lower and 13.7% higher than previous years during the lockdown at rural and suburban sites, respectively. NO2 decreased by 50.7% in urban areas, but increased slightly in agricultural regions, consistent with satellite observations. PM concentrations did not change significantly compared to previous years; however, a reduction in the signal variability in the smaller size particle measurements may be the result of different emission sources. The reduction in NO2 likely increased the ratio of volatile organic compounds (VOCs) to NOx (nitrogen oxides), creating a NOx limited environment, which resulted in an initial increase in O3 in suburban areas, and the lower than usual levels observed at rural sites. Meteorology showed higher than average wind speeds prior to lockdown, which likely acted to disperse PM and NO2.

11.
Energy Fuels ; 35(6): 4966-4978, 2021 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-34276128

RESUMEN

Solid-fuel stoves are at the heart of many homes not only in developing nations, but also in developed regions where there is significant deployment of such heating appliances. They are often operated inefficiently and in association with high emission fuels like wood. This leads to disproportionate air pollution contributions. Despite the proliferation of these appliances, an understanding of particulate matter (PM) emissions from these sources remains relatively low. Emissions from five solid fuels are quantified using a "conventional" and an Ecodesign stove. PM measurements are obtained using both "hot filter" sampling of the raw flue gas, and sampling of cooled, diluted flue gas using an Aerosol Chemical Speciation Monitor and AE33 aethalometer. PM emissions factors (EF) derived from diluted flue gas incorporate light condensable organic compounds; hence they are generally higher than those obtained with "hot filter" sampling, which do not. Overall, the PM EFs ranged from 0.2 to 108.2 g GJ-1 for solid fuels. The PM EF determined for a solid fuel depends strongly on the measurement method employed and on user behavior, and less strongly on secondary air supply and stove type. Kerosene-based firelighters were found to make a disproportionately high contribution to PM emissions. Organic aerosol dominated PM composition for all fuels, constituting 50-65% of PM from bituminous and low-smoke ovoids, and 85-95% from torrefied olive stone (TOS) briquettes, sod peat, and wood logs. Torrefied biomass and low-smoke ovoids were found to yield the lowest PM emissions. Substituting these fuels for smoky coal, peat, and wood could reduce PM2.5 emissions by approximately 63%.

12.
Sci Total Environ ; 791: 148126, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34119790

RESUMEN

Enhanced secondary aerosol formation was observed during the COVID-19 lockdown in Xi'an, especially for polluted episodes. More oxidized­oxygenated organic aerosol (MO-OOA) and sulfate showed the dominant enhancements, especially in large particle-mode. Meanwhile, relative humidity (RH) showed a positive promotion on the formation of sulfate and MO-OOA during the lockdown, but had no obvious correlation with less oxidized­oxygenated organic aerosol (LO-OOA) or nitrate. Organosulfurs (OS) displayed a higher contribution (~58%) than inorganic sulfate to total sulfate enhancement in the polluted episode during the lockdown. Although the total nitrate (TN) decreased during the lockdown ascribing to a larger reduction of inorganic nitrate, organic nitrate (ON) showed an obvious increase from pre-lockdown (0.5 ± 0.6 µg m-3 and 1 ± 2% of TN) to lockdown (5.3 ± 3.1 µg m-3 and 17 ± 9% of TN) in the polluted case (P < 0.05). In addition, RH also displayed a positive promotion on the formation of ON and OS, and the increases of both OS and ON were much efficient in the nighttime than in the daytime. These results suggest that higher RH and stagnant meteorology might facilitate the sulfate and MO-OOA enhancement, especially in the nighttime, which dominated the secondary aerosol enhancement in haze pollution during the lockdown.


Asunto(s)
Contaminantes Atmosféricos , COVID-19 , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Control de Enfermedades Transmisibles , Monitoreo del Ambiente , Humanos , Material Particulado/análisis , SARS-CoV-2
13.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-33479177

RESUMEN

Reactive iodine plays a key role in determining the oxidation capacity, or cleansing capacity, of the atmosphere in addition to being implicated in the formation of new particles in the marine boundary layer. The postulation that heterogeneous cycling of reactive iodine on aerosols may significantly influence the lifetime of ozone in the troposphere not only remains poorly understood but also heretofore has never been observed or quantified in the field. Here, we report direct ambient observations of hypoiodous acid (HOI) and heterogeneous recycling of interhalogen product species (i.e., iodine monochloride [ICl] and iodine monobromide [IBr]) in a midlatitude coastal environment. Significant levels of ICl and IBr with mean daily maxima of 4.3 and 3.0 parts per trillion by volume (1-min average), respectively, have been observed throughout the campaign. We show that the heterogeneous reaction of HOI on marine aerosol and subsequent production of iodine interhalogens are much faster than previously thought. These results indicate that the fast formation of iodine interhalogens, together with their rapid photolysis, results in more efficient recycling of atomic iodine than currently considered in models. Photolysis of the observed ICl and IBr leads to a 32% increase in the daytime average of atomic iodine production rate, thereby enhancing the average daytime iodine-catalyzed ozone loss rate by 10 to 20%. Our findings provide direct field evidence that the autocatalytic mechanism of iodine release from marine aerosol is important in the atmosphere and can have significant impacts on atmospheric oxidation capacity.

14.
Sci Total Environ ; 756: 144077, 2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33280860

RESUMEN

Secondary organic aerosol (SOA) is an important contributor to organic aerosol (OA), however, the model simulations of SOA concentrations and oxidation states remain significant uncertainties because of inadequate cognition of its formation and aging chemistry. In this study, SOA formation and evolution processes during summer in Xi'an were investigated, based on high-resolution online measurements of non-refractory PM2.5 (NR-PM2.5) species and OA source apportionment using positive matrix factorization. The results showed that the total SOA, including less oxidized-oxygenated OA (LO-OOA), more oxidized-oxygenated OA (MO-OOA), and aqueous-phase-processed oxygenated OA (aq-OOA), on average constituted 69% of OA, and 43% of NR-PM2.5, suggesting the high atmospheric oxidation capacity and the dominance of SOA during summer in Xi'an. Photochemical oxidation processes dominated the summertime SOA formation both during non-fog-rain days and fog-rain days, which were responsible for the formation of both LO-OOA and MO-OOA. Consistently, LO-OOA and MO-OOA in total contributed 59% to OA during non-fog-rain days and 56% to OA during fog-rain days, respectively. On the contrary, aq-OOA was mainly observed during fog-rain days, which increased dramatically from 2% of OA during non-fog-rain days to 19% of OA during fog-rain days with the mass concentration increasing accordingly from 0.3 µg m-3 to 2.5 µg m-3. Episodic analyses further highlighted the persistently high RH period with high aerosol liquid water content (ALWC) was the driving factor of aq-OOA formation, and high Ox condition could further enhance its formation. Meanwhile, air masses from east and southeast were much favorable for the formation of long-time fog-rain days, which facilitated aq-OOA production during summer in Xi'an.

15.
Environ Sci Technol ; 54(13): 7807-7817, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32501707

RESUMEN

We present shipborne measurements of size-resolved concentrations of aerosol components across ocean waters next to the Antarctic Peninsula, South Orkney Islands, and South Georgia Island, evidencing aerosol features associated with distinct eco-regions. Nonmethanesulfonic acid Water-Soluble Organic Matter (WSOM) represented 6-8% and 11-22% of the aerosol PM1 mass originated in open ocean (OO) and sea ice (SI) regions, respectively. Other major components included sea salt (86-88% OO, 24-27% SI), non sea salt sulfate (3-4% OO, 35-40% SI), and MSA (1-2% OO, 11-12% SI). The chemical composition of WSOM encompasses secondary organic components with diverse behaviors: while alkylamine concentrations were higher in SI air masses, oxalic acid showed higher concentrations in the open ocean air. Our online single-particle mass spectrometry data exclude a widespread source from sea bird colonies, while the secondary production of oxalic acid and sulfur-containing organic species via cloud processing is suggested. We claim that the potential impact of the sympagic planktonic ecosystem on aerosol composition has been overlooked in past studies, and multiple eco-regions act as distinct aerosol sources around Antarctica.


Asunto(s)
Contaminantes Atmosféricos , Ecosistema , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Regiones Antárticas , Monitoreo del Ambiente , Sulfatos
16.
Environ Sci Technol ; 54(13): 7836-7847, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32479722

RESUMEN

The chromophores responsible for light absorption in atmospheric brown carbon (BrC) are not well characterized, which hinders our understanding of BrC chemistry, the links with optical properties, and accurate model representations of BrC to global climate and atmospheric oxidative capacity. In this study, the light absorption properties and chromophore composition of three BrC fractions of different polarities were characterized for urban aerosol collected in Xi'an and Beijing in winter 2013-2014. These three BrC fractions show large differences in light absorption and chromophore composition, but the chromophores responsible for light absorption are similar in Xi'an and Beijing. Water-insoluble BrC (WI-BrC) fraction dominates the total BrC absorption at 365 nm in both Xi'an (51 ± 5%) and Beijing (62 ± 13%), followed by a humic-like fraction (HULIS-BrC) and high-polarity water-soluble BrC. The major chromophores identified in HULIS-BrC are nitrophenols and carbonyl oxygenated polycyclic aromatic hydrocarbons (OPAHs) with 2-3 aromatic rings (in total 18 species), accounting for 10% and 14% of the light absorption of HULIS-BrC at 365 nm in Xi'an and Beijing, respectively. In comparison, the major chromophores identified in WI-BrC are PAHs and OPAHs with 4-6 aromatic rings (in total 16 species), contributing 6% and 8% of the light absorption of WI-BrC at 365 nm in Xi'an and Beijing, respectively.


Asunto(s)
Carbono , Agua , Aerosoles/análisis , Beijing , Carbono/análisis , China , Monitoreo del Ambiente
17.
Sci Total Environ ; 737: 139666, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32526566

RESUMEN

The Guanzhong basin is a part of the three top priority regions in China's blue sky action as of 2019. Understanding the chemical composition, sources, and atmospheric process of aerosol in this region is therefore imperative for improving air quality. In this study, we present, for the first time, the seasonal variations of organic aerosol (OA) in Xi'an, the largest city in the Guanzhong basin. Biomass burning OA (BBOA) and oxidized OA (OOA) contributed >50% of OA in both autumn and winter. The average concentrations of BBOA in autumn (14.8 ± 5.1 µg m-3) and winter (11.6 ± 6.8 µg m-3) were similar. The fractional contribution of BBOA to total OA, however, decreased from 31.9% in autumn to 15.3% in winter, because of enhanced contributions from other sources in winter. The OOA fraction in OA increased largely from 20.9% in autumn to 34.9% in winter, likely due to enhanced emissions of precursors and stagnant meteorological conditions which facilitate the accumulation and secondary formation. A large increase in OOA concentration was observed during polluted days, by a factor of ~4 in autumn and ~6 in winter compared to clean days. In both seasons, OOA formation was most likely dominated by photochemical oxidation when aerosol liquid water content was <30 µg m-3 or by aqueous-phase processes when Ox was <35 ppb. A higher concentration of BBOA was observed for air masses circulated within the Guanzhong basin (16.5-18.1 µg m-3), compared to air masses from Northwest and West (10.9-14.5 µg m-3). Furthermore, compared with OA fraction in non-refractory PM1 in other regions of China, BBOA (17-19%) and coal combustion OA (10-20%) were major emission sources in the Guanzhong Basin and the BTH region, respectively, whereas OOA (10-34%) was an important source in all studied regions.

18.
Environ Int ; 140: 105732, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32361073

RESUMEN

To mitigate air pollution in China, a legislative 'Air Pollution Prevention and Control Action Plan' has been implemented by the Chinese government since 2013. There is, however, a lack of investigations for long-term trends in the composition, sources and evolution processes of PM1 (particulate matter with diameter less than 1 µm) after the implementation. To evaluate the effectiveness of these control measures, we present a year-long real-time measurement of the chemical composition of PM1 at an urban site in Beijing from November 2014 to November 2015, and the results are compared with previous studies from 2008 to 2013 to gain insights into the variations of the chemical composition and sources of PM1 in Beijing. Large seasonal differences were observed in the mass concentrations of PM1 species and general declining trend was observed in the last seven years. Specifically, the annual averages of mass concentrations in 2014-2015 decrease by 16-43% (PM1), 23-43% (organic aerosol, OA), 38-68% (sulfate), 26-51% (nitrate), 18-33% (ammonium) and 27-38% (chloride) compared to those from 2008 to 2013. During winter and summer, the seasonal mass concentrations of sulfate and nitrate show more significant declines especially in summer 2008 (79% and 81%) and summer 2011 (76% and 77%). The nitrate-to-sulfate ratio is higher in 2014-2015 (1.5 ± 0.6) than that in 2013 (1.0 ± 0.3), largely due to significant reduction in SO2 emissions, suggesting that nitrate is becoming more important than sulfate in particulate pollution in Beijing. OA is the dominant PM1 fraction (>45%) in all seasons and the mass concentrations/contributions of both primary and secondary OA show different seasonality. As for the more oxidized oxygenated OA (MO-OOA) and less oxidized oxygenated OA (LO-OOA), the contributions of MO-OOA are much higher than those of LO-OOA (27-62% vs. 6-26%) in both high-pollution and low-pollution days. Aqueous-phase processes are found to facilitate the formation of MO-OOA while photochemical oxidation formation is a major contributor of LO-OOA in winter, and photochemical oxidation plays a major role in the formation of MO-OOA in summer and fall. The current study provides a comprehensive seasonal comparison of chemical composition and formation of PM1 in Beijing and a pacesetter in tackling PM pollution for other equally polluted megacities, after implementation of more stringent control measures after 2013.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Beijing , China , Monitoreo del Ambiente , Material Particulado/análisis , Estaciones del Año
19.
Sci Total Environ ; 717: 137190, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32062279

RESUMEN

Sulfate and nitrate from secondary reactions remain as the most abundant inorganic species in atmospheric particle matter (PM). Their formation is initiated by oxidation (either in gas phase or particle phase), followed by neutralization reaction primarily by NH3, or by other alkaline species such as alkaline metal ions if available. The different roles of NH3 and metal ions in neutralizing H2SO4 or HNO3, however, are seldom investigated. Here we conducted semi-continuous measurements of SO42-, NO3-, NH4+, and their gaseous precursors, as well as alkaline metal ions (Na+, K+, Ca2+, and Mg2+) in wintertime Beijing. Analysis of aerosol acidity (estimated from a thermodynamic model) indicated that preferable sulfate formation was related to low pH conditions, while high pH conditions promote nitrate formation. Data in different mass fraction ranges of alkaline metal ions showed that in some ranges the role of NH3 was replaced by alkaline metal ions in the neutralization reaction of H2SO4 and HNO3 to form particulate SO42- and NO3-. The relationships between mass fractions of SO42- and NO3- in those ranges of different alkaline metal ion content also suggested that alkaline metal ions participate in the competing neutralization reaction of sulfate and nitrate. The implication of the current study is that in some regions the chemistry to incorporate sulfur and nitrogen into particle phase might be largely affected by desert/fugitive dust and sea salt, besides NH3. This implication is particularly relevant in coastal China and those areas with strong influence of dust storm in the North China Plain (NCP), both of which host a number of megacities with deteriorating air quality.

20.
Sci Rep ; 9(1): 10613, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31316110

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA