Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell Rep ; 43(8): 114607, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39126652

RESUMEN

Macrophage metabolic plasticity is central to inflammatory programming, yet mechanisms of coordinating metabolic and inflammatory programs during infection are poorly defined. Here, we show that type I interferon (IFN) temporally guides metabolic control of inflammation during methicillin-resistant Staphylococcus aureus (MRSA) infection. We find that staggered Toll-like receptor and type I IFN signaling in macrophages permit a transient energetic state of combined oxidative phosphorylation (OXPHOS) and aerobic glycolysis followed by inducible nitric oxide synthase (iNOS)-mediated OXPHOS disruption. This disruption promotes type I IFN, suppressing other pro-inflammatory cytokines, notably interleukin-1ß. Upon infection, iNOS expression peaks at 24 h, followed by lactate-driven Nos2 repression via histone lactylation. Type I IFN pre-conditioning prolongs infection-induced iNOS expression, amplifying type I IFN. Cutaneous MRSA infection in mice constitutively expressing epidermal type I IFN results in elevated iNOS levels, impaired wound healing, vasculopathy, and lung infection. Thus, kinetically regulated type I IFN signaling coordinates immunometabolic checkpoints that control infection-induced inflammation.


Asunto(s)
Inflamación , Interferón Tipo I , Macrófagos , Staphylococcus aureus Resistente a Meticilina , Óxido Nítrico Sintasa de Tipo II , Transducción de Señal , Infecciones Estafilocócicas , Animales , Interferón Tipo I/metabolismo , Inflamación/patología , Inflamación/metabolismo , Ratones , Óxido Nítrico Sintasa de Tipo II/metabolismo , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/patología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Glucólisis , Interleucina-1beta/metabolismo
3.
mSphere ; 9(7): e0063823, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38958459

RESUMEN

Five years ago, as I was starting my lab, I wrote about two functional genomic screens in fungi that had inspired me (mSphere 4:e00299-19, https://doi.org/10.1128/mSphere.00299-19). Now, I want to discuss some of the principles and questions that I ask myself and my students as we embark on our own screens. A good screen, whether it is a genetic or chemical screen, can be the starting point for new discovery and an excellent basis for the beginning of a scientific research project. However, screens are often criticized for being "fishing expeditions." To stretch this metaphor to the extreme, this is because people are worried that we do not know how to fish, that we will come home without any fish, bring home the wrong fish, or not know what to do with a fish if we caught it. How you set up the screen and analyze the results determines whether the screen will be useful. In this mini-review, and in the spirit of teaching a scientist to fish, I will discuss recent excellent fungal genetic and chemical screens that illustrate some of the key aspects of a successful screen.


Asunto(s)
Hongos , Hongos/genética , Pruebas Genéticas/métodos , Genómica
5.
PLoS Pathog ; 20(3): e1012011, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38427609

RESUMEN

Candida auris is an emerging fungal pathogen with unusual evolutionary history-there are multiple distinct phylogeographic clades showing a near simultaneous transition from a currently unknown reservoir to nosocomial pathogen. Each of these clades has experienced different selective pressures over time, likely resulting in selection for genotypes with differential fitness or phenotypic consequences when introduced to new environments. We also observe diversification within clades, providing additional opportunities for phenotypic differences. These differences can have large impacts on pathogenic potential, drug resistance profile, evolutionary trajectory, and transmissibility. In recent years, there have been significant advances in our understanding of strain-specific behavior in other microbes, including bacterial and fungal pathogens, and we have an opportunity to take this strain variation into account when describing aspects of C. auris biology. Here, we critically review the literature to gain insight into differences at both the strain and clade levels in C. auris, focusing on phenotypes associated with clinical disease or transmission. Our goal is to integrate clinical and epidemiological perspectives with molecular perspectives in a way that would be valuable for both audiences. Identifying differences between strains and understanding which phenotypes are strain specific will be crucial for understanding this emerging pathogen, and an important caveat when describing the analysis of a singular isolate.


Asunto(s)
Evolución Biológica , Candida auris , Fenotipo , Genotipo , Hospitales
6.
PLoS Genet ; 20(2): e1011158, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38359090

RESUMEN

Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process. For Cryptococcus neoformans, a prevalent human fungal pathogen greatly diverged from model yeasts, approximately 60% of the predicted genes in the genome lack functional annotations. Here, we leveraged a large amount of publicly available transcriptomic data to generate a C. neoformans Co-Expression Network (CryptoCEN), successfully recapitulating known protein networks, predicting gene function, and enabling insights into the principles influencing co-expression. With 100% predictive accuracy, we used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility of guilt-by-association for determining gene function. Overall, co-expression is a powerful tool for uncovering gene function, and decreases the experimental tests needed to identify functions for currently under-annotated genes.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Humanos , Cryptococcus neoformans/genética , Criptococosis/genética , Criptococosis/microbiología , Reparación del ADN/genética , Fenotipo , Daño del ADN/genética , Proteínas Fúngicas/genética
7.
bioRxiv ; 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37873171

RESUMEN

Infection by intracellular pathogens can trigger activation of the IRE1α branch of the unfolded protein response (UPR), which then modulates innate immunity and infection outcomes during bacterial or viral infection. However, the mechanisms by which infection activates IRE1α have not been fully elucidated. While recognition of microbe-associated molecular patterns can activate IRE1α, it is unclear whether this depends on the canonical role of IRE1α in detecting misfolded proteins. Here, we report that Candida albicans infection of macrophages results in IRE1α activation through C-type lectin receptor signaling, reinforcing a role for IRE1α as a central regulator of host responses to infection by a broad range of pathogens. However, IRE1α activation was not preceded by protein misfolding in response to either C. albicans infection or lipopolysaccharide treatment, implicating a non-canonical mode of IRE1α activation after recognition of microbial patterns. Investigation of the phenotypic consequences of IRE1α activation in macrophage antimicrobial responses revealed that IRE1α activity enhances the fungicidal activity of macrophages. Macrophages lacking IRE1α activity displayed inefficient phagolysosomal fusion, enabling C. albicans to evade fungal killing and escape the phagosome. Together, these data provide mechanistic insight for the non-canonical activation of IRE1α during infection, and reveal central roles for IRE1α in macrophage antifungal responses.

8.
Science ; 381(6665): 1461-1467, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769084

RESUMEN

Candida auris is an emerging fungal pathogen responsible for health care-associated outbreaks that arise from persistent surface and skin colonization. We characterized the arsenal of adhesins used by C. auris and discovered an uncharacterized adhesin, Surface Colonization Factor (Scf1), and a conserved adhesin, Iff4109, that are essential for the colonization of inert surfaces and mammalian hosts. SCF1 is apparently specific to C. auris, and its expression mediates adhesion to inert and biological surfaces across isolates from all five clades. Unlike canonical fungal adhesins, which function through hydrophobic interactions, Scf1 relies on exposed cationic residues for surface association. SCF1 is required for C. auris biofilm formation, skin colonization, virulence in systemic infection, and colonization of inserted medical devices.


Asunto(s)
Candida auris , Candidiasis Invasiva , Proteínas Fúngicas , Proteínas de Microfilamentos , Animales , Humanos , Candida auris/genética , Candida auris/patogenicidad , Virulencia , Candidiasis Invasiva/microbiología , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Microfilamentos/química , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Dominios Proteicos , Interacciones Hidrofóbicas e Hidrofílicas , Ratones
9.
bioRxiv ; 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37645941

RESUMEN

Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process. For Cryptococcus neoformans, a prevalent human fungal pathogen greatly diverged from model yeasts, approximately 60% of the predicted genes in the genome lack functional annotations. Here, we leveraged a large amount of publicly available transcriptomic data to generate a C. neoformans Co-Expression Network (CryptoCEN), successfully recapitulating known protein networks, predicting gene function, and enabling insights into the principles influencing co-expression. With 100% predictive accuracy, we used CryptoCEN to identify 13 new DNA damage response genes, underscoring the utility of guilt-by-association for determining gene function. Overall, co-expression is a powerful tool for uncovering gene function, and decreases the experimental tests needed to identify functions for currently under-annotated genes.

10.
Antimicrob Agents Chemother ; 67(7): e0050323, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37382550

RESUMEN

Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure toward resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC50 values ranging from 0.2 to 150 µM. Multiple compounds showed a phenyl sulfone chemotype, prompting further analysis. Of these phenyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified eIF3 as the target of NSC 697923 in C. albicans.


Asunto(s)
Antifúngicos , Candida albicans , Animales , Humanos , Candida albicans/metabolismo , Antifúngicos/uso terapéutico , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Factores de Virulencia/metabolismo , Factores de Iniciación de Péptidos/metabolismo , Hifa , Mamíferos/metabolismo
11.
bioRxiv ; 2023 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-37131825

RESUMEN

Fungal pathogens like Candida albicans can cause devastating human disease. Treatment of candidemia is complicated by the high rate of resistance to common antifungal therapies. Additionally, there is host toxicity associated with many antifungal compounds due to the conservation between essential mammalian and fungal proteins. An attractive new approach for antimicrobial development is to target virulence factors: non-essential processes that are required for the organism to cause disease in human hosts. This approach expands the potential target space while reducing the selective pressure towards resistance, as these targets are not essential for viability. In C. albicans, a key virulence factor is the ability to transition to hyphal morphology. We developed a high-throughput image analysis pipeline to distinguish between yeast and filamentous growth in C. albicans at the single cell level. Based on this phenotypic assay, we screened the FDA drug repurposing library of 2,017 compounds for their ability to inhibit filamentation and identified 33 compounds that block the hyphal transition in C. albicans with IC 50 values ranging from 0.2 to 150 µM. Multiple compounds showed a phenyl vinyl sulfone chemotype, prompting further analysis. Of these phenyl vinyl sulfones, NSC 697923 displayed the most efficacy, and by selecting for resistant mutants, we identified eIF3 as the target of NSC 697923 in C. albicans .

12.
PLoS Biol ; 21(5): e3001822, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205709

RESUMEN

Candida albicans is a frequent colonizer of human mucosal surfaces as well as an opportunistic pathogen. C. albicans is remarkably versatile in its ability to colonize diverse host sites with differences in oxygen and nutrient availability, pH, immune responses, and resident microbes, among other cues. It is unclear how the genetic background of a commensal colonizing population can influence the shift to pathogenicity. Therefore, we examined 910 commensal isolates from 35 healthy donors to identify host niche-specific adaptations. We demonstrate that healthy people are reservoirs for genotypically and phenotypically diverse C. albicans strains. Using limited diversity exploitation, we identified a single nucleotide change in the uncharacterized ZMS1 transcription factor that was sufficient to drive hyper invasion into agar. We found that SC5314 was significantly different from the majority of both commensal and bloodstream isolates in its ability to induce host cell death. However, our commensal strains retained the capacity to cause disease in the Galleria model of systemic infection, including outcompeting the SC5314 reference strain during systemic competition assays. This study provides a global view of commensal strain variation and within-host strain diversity of C. albicans and suggests that selection for commensalism in humans does not result in a fitness cost for invasive disease.


Asunto(s)
Candida albicans , Simbiosis , Humanos , Candida albicans/genética , Factores de Transcripción/genética , Regulación de la Expresión Génica
14.
Nat Commun ; 12(1): 7197, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893621

RESUMEN

Candida auris is an emerging healthcare-associated pathogen of global concern. Recent reports have identified C. auris isolates that grow in cellular aggregates or filaments, often without a clear genetic explanation. To investigate the regulation of C. auris morphogenesis, we applied an Agrobacterium-mediated transformation system to all four C. auris clades. We identified aggregating mutants associated with disruption of chitin regulation, while disruption of ELM1 produced a polarized, filamentous growth morphology. We developed a transiently expressed Cas9 and sgRNA system for C. auris that significantly increased targeted transformation efficiency across the four C. auris clades. Using this system, we confirmed the roles of C. auris morphogenesis regulators. Morphogenic mutants showed dysregulated chitinase expression, attenuated virulence, and altered antifungal susceptibility. Our findings provide insights into the genetic regulation of aggregating and filamentous morphogenesis in C. auris. Furthermore, the genetic tools described here will allow for efficient manipulation of the C. auris genome.


Asunto(s)
Candida auris/citología , Candida auris/genética , Candida auris/fisiología , Proteínas Fúngicas/genética , Morfogénesis/genética , Genética Inversa , Animales , Antifúngicos/farmacología , Sistemas CRISPR-Cas , Candida auris/efectos de los fármacos , Candidiasis/microbiología , Modelos Animales de Enfermedad , Farmacorresistencia Fúngica/efectos de los fármacos , Fluconazol , Regulación Fúngica de la Expresión Génica , Morfogénesis/efectos de los fármacos , Mariposas Nocturnas , Mutación , Proteínas Quinasas/genética , Virulencia
15.
Nat Commun ; 12(1): 6497, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34764269

RESUMEN

Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), an antifungal compound.


Asunto(s)
Aprendizaje Automático , Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Cinetocoros/metabolismo , Biología de Sistemas/métodos
16.
Nat Commun ; 12(1): 6151, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34686660

RESUMEN

The fungus Candida albicans is an opportunistic pathogen that can exploit imbalances in microbiome composition to invade its human host, causing pathologies ranging from vaginal candidiasis to fungal sepsis. Bacteria of the genus Lactobacillus are colonizers of human mucosa and can produce compounds with bioactivity against C. albicans. Here, we show that some Lactobacillus species produce a small molecule under laboratory conditions that blocks the C. albicans yeast-to-filament transition, an important virulence trait. It remains unexplored whether the compound is produced in the context of the human host. Bioassay-guided fractionation of Lactobacillus-conditioned medium linked this activity to 1-acetyl-ß-carboline (1-ABC). We use genetic approaches to show that filamentation inhibition by 1-ABC requires Yak1, a DYRK1-family kinase. Additional biochemical characterization of structurally related 1-ethoxycarbonyl-ß-carboline confirms that it inhibits Yak1 and blocks C. albicans biofilm formation. Thus, our findings reveal Lactobacillus-produced 1-ABC can prevent the yeast-to-filament transition in C. albicans through inhibition of Yak1.


Asunto(s)
Antifúngicos/farmacología , Candida albicans/efectos de los fármacos , Lactobacillus/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Animales , Antifúngicos/metabolismo , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida albicans/genética , Candida albicans/patogenicidad , Candidiasis/microbiología , Carbolinas/metabolismo , Carbolinas/farmacología , Farmacorresistencia Fúngica/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hifa/efectos de los fármacos , Hifa/genética , Hifa/patogenicidad , Mutación , Inhibidores de Proteínas Quinasas/metabolismo , Ratas , Virulencia/efectos de los fármacos , Quinasas DyrK
17.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34413211

RESUMEN

The global spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and the associated disease COVID-19, requires therapeutic interventions that can be rapidly identified and translated to clinical care. Traditional drug discovery methods have a >90% failure rate and can take 10 to 15 y from target identification to clinical use. In contrast, drug repurposing can significantly accelerate translation. We developed a quantitative high-throughput screen to identify efficacious agents against SARS-CoV-2. From a library of 1,425 US Food and Drug Administration (FDA)-approved compounds and clinical candidates, we identified 17 hits that inhibited SARS-CoV-2 infection and analyzed their antiviral activity across multiple cell lines, including lymph node carcinoma of the prostate (LNCaP) cells and a physiologically relevant model of alveolar epithelial type 2 cells (iAEC2s). Additionally, we found that inhibitors of the Ras/Raf/MEK/ERK signaling pathway exacerbate SARS-CoV-2 infection in vitro. Notably, we discovered that lactoferrin, a glycoprotein found in secretory fluids including mammalian milk, inhibits SARS-CoV-2 infection in the nanomolar range in all cell models with multiple modes of action, including blockage of virus attachment to cellular heparan sulfate and enhancement of interferon responses. Given its safety profile, lactoferrin is a readily translatable therapeutic option for the management of COVID-19.


Asunto(s)
Antivirales/farmacología , Factores Inmunológicos/farmacología , Lactoferrina/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Animales , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Células CACO-2 , Línea Celular Tumoral , Chlorocebus aethiops , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Reposicionamiento de Medicamentos/métodos , Células Epiteliales , Heparitina Sulfato/antagonistas & inhibidores , Heparitina Sulfato/inmunología , Heparitina Sulfato/metabolismo , Hepatocitos , Ensayos Analíticos de Alto Rendimiento , Humanos , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Células Vero , Tratamiento Farmacológico de COVID-19
18.
Cell Rep ; 36(8): 109584, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433036

RESUMEN

Evasion of killing by immune cells is crucial for fungal survival in the host. For the human fungal pathogen Candida albicans, internalization by macrophages induces a transition from yeast to filaments that promotes macrophage death and fungal escape. Nutrient deprivation, alkaline pH, and oxidative stress have been implicated as triggers of intraphagosomal filamentation; however, the impact of other host-derived factors remained unknown. Here, we show that lysates prepared from macrophage-like cell lines and primary macrophages robustly induce C. albicans filamentation. Enzymatic treatment of lysate implicates a phosphorylated protein, and bioactivity-guided fractionation coupled to mass spectrometry identifies the immunomodulatory phosphoprotein PTMA as a candidate trigger of C. albicans filamentation. Immunoneutralization of PTMA within lysate abolishes its activity, strongly supporting PTMA as a filament-inducing component of macrophage lysate. Adding to the known repertoire of physical factors, this work implicates a host protein in the induction of C. albicans filamentation within immune cells.


Asunto(s)
Proteínas Fúngicas/inmunología , Hifa/patogenicidad , Macrófagos/inmunología , Fagosomas/microbiología , Candida albicans/metabolismo , Candida albicans/patogenicidad , Línea Celular , Proteínas Fúngicas/metabolismo , Humanos , Hifa/metabolismo , Evasión Inmune/inmunología
19.
mSphere ; 6(4): e0063821, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34346707

RESUMEN

Candida auris is an emerging multidrug-resistant yeast that is associated with skin colonization and deadly bloodstream infections, especially in ventilator skilled nursing facilities. An ongoing question is how this organism colonizes the skin of these patients and whether the skin microbiome provides a measure of colonization resistance against C. auris. Now, Huang et al. (X. Huang, R. M. Welsh, C. Deming, D. M. Proctor, et al., mSphere 6:e00287-21, 2021, https://doi.org/10.1128/mSphere.00287-21) demonstrate a method for shotgun metagenomic analysis of the skin to generate a profile of fungal colonization that is highly correlative with culture-based methods. These methods are likely to assist in the diagnosis of C. auris and the identification of microbiome-associated risk factors that predict invasive disease.


Asunto(s)
Candida , Metagenómica , Candida/genética , Humanos , Piel , Ventiladores Mecánicos
20.
Nature ; 596(7870): 114-118, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34262174

RESUMEN

Pathogenic fungi reside in the intestinal microbiota but rarely cause disease. Little is known about the interactions between fungi and the immune system that promote commensalism. Here we investigate the role of adaptive immunity in promoting mutual interactions between fungi and host. We find that potentially pathogenic Candida species induce and are targeted by intestinal immunoglobulin A (IgA) responses. Focused studies on Candida albicans reveal that the pathogenic hyphal morphotype, which is specialized for adhesion and invasion, is preferentially targeted and suppressed by intestinal IgA responses. IgA from mice and humans directly targets hyphal-enriched cell-surface adhesins. Although typically required for pathogenesis, C. albicans hyphae are less fit for gut colonization1,2 and we show that immune selection against hyphae improves the competitive fitness of C. albicans. C. albicans exacerbates intestinal colitis3 and we demonstrate that hyphae and an IgA-targeted adhesin exacerbate intestinal damage. Finally, using a clinically relevant vaccine to induce an adhesin-specific immune response protects mice from C. albicans-associated damage during colitis. Together, our findings show that adaptive immunity suppresses harmful fungal effectors, with benefits to both C. albicans and its host. Thus, IgA uniquely uncouples colonization from pathogenesis in commensal fungi to promote homeostasis.


Asunto(s)
Inmunidad Adaptativa , Candida albicans/inmunología , Candida albicans/fisiología , Interacciones Huésped-Patógeno/inmunología , Simbiosis/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antígenos Fúngicos/inmunología , Candida albicans/patogenicidad , Colitis/inmunología , Colitis/microbiología , Colitis/patología , Femenino , Vacunas Fúngicas/inmunología , Microbioma Gastrointestinal/inmunología , Humanos , Hifa/inmunología , Inmunoglobulina A/inmunología , Masculino , Ratones , Persona de Mediana Edad , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA