RESUMEN
Purpose: This study aimed to quantify the changes in intratumoral blood flow after carbon-ion radiation therapy (CIRT) for early-stage breast cancer and analyze their clinical significance. Patients and Methods: We included 38 patients with early-stage breast cancer who underwent CIRT. Dynamic imaging was performed using a 3T superconducting magnetic resonance scanner to quantify the washin index (idx), which reflects contrast uptake, and washout idx, which reflects the rate of contrast washout from tumor tissue. The changes in the apparent diffusion coefficient, washin idx, and washout idx were examined before CIRT and at 1 and 3 months after treatment. Clinical factors and imaging features were examined using univariate and receiver operating characteristic curve analyses to identify factors predicting clinical complete response (cCR). Results: The median observation period after CIRT was 51 (range: 12-122) months. During the observation period, 31 of the 38 patients achieved cCR, and 22 achieved cCR within 12 months. Tumor size (P < .001), washin idx (P = .043), and washout idx (P < .001) decreased significantly 1-month after CIRT. In contrast, the apparent diffusion coefficient values (P < .001) increased significantly 1-month after CIRT. Univariate analysis suggested that the washin idx after 1 and 3 months of CIRT was associated with cCR by 12 months post-CIRT (P = .028 and .021, respectively). No other parameters were associated with cCR by 12 months post-CIRT. Furthermore, receiver operating characteristic curve analyses showed that the area under the curve values of washin idx after 1 and 3 months of CIRT was 0.78 (specificity 75%, sensitivity 80%) and 0.73 (specificity 75%, sensitivity 71%), respectively. Conclusion: Tumor changes can be quantified early after CIRT using contrast-enhanced magnetic resonance imaging in patients with breast cancer. Washin idx values 1 and 3 months after CIRT were associated with cCR within 12 months post-CIRT.
RESUMEN
OBJECTIVE: Although astrocytic pathology is a pathological hallmark of progressive supranuclear palsy (PSP), its pathophysiological role remains unclear. This study aimed to assess astrocyte reactivity in vivo in patients with PSP. Furthermore, we investigated alterations in brain lactate levels and their relationship with astrocyte reactivity. METHODS: We included 30 patients with PSP-Richardson syndrome and 30 healthy controls; in patients, tau deposition was confirmed through 18F-florzolotau positron emission tomography. Myo-inositol, an astroglial marker, and lactate were quantified in the anterior cingulate cortex through magnetic resonance spectroscopy. We measured plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker. The anterior cingulate cortex was histologically assessed in postmortem samples of another 3 patients with PSP with comparable disease durations. RESULTS: The levels of myo-inositol and plasma glial fibrillary acidic protein were significantly higher in patients than those in healthy controls (p < 0.05); these increases were significantly associated with PSP rating scale and cognitive function scores (p < 0.05). The lactate level was high in patients, and correlated significantly with high myo-inositol levels. Histological analysis of the anterior cingulate cortex in patients revealed reactive astrocytes, despite mild tau deposition, and no marked synaptic loss. INTERPRETATION: We discovered high levels of astrocyte biomarkers in patients with PSP, suggesting astrocyte reactivity. The association between myo-inositol and lactate levels suggests a link between reactive astrocytes and brain energy metabolism changes. Our results indicate that astrocyte reactivity in the anterior cingulate cortex precedes pronounced tau pathology and neurodegenerative processes in that region, and affects brain function in PSP. ANN NEUROL 2024;96:247-261.
Asunto(s)
Astrocitos , Proteína Ácida Fibrilar de la Glía , Giro del Cíngulo , Inositol , Ácido Láctico , Parálisis Supranuclear Progresiva , Humanos , Parálisis Supranuclear Progresiva/metabolismo , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/patología , Astrocitos/metabolismo , Astrocitos/patología , Masculino , Femenino , Anciano , Persona de Mediana Edad , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/sangre , Ácido Láctico/sangre , Ácido Láctico/metabolismo , Inositol/metabolismo , Giro del Cíngulo/metabolismo , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/patología , Biomarcadores/sangre , Proteínas tau/metabolismo , Tomografía de Emisión de PositronesRESUMEN
PURPOSE: The purpose of this study was to do a feasibility study on a microstrip transmission line (MS) RF coil for a positron emission tomography (PET) insert in a 7 Tesla human MRI system. The proposed MS coil integrated the RF shield of the PET detector as the ground conductor of the coil. We called the integrated module "MS PET coil." METHODS: A single-channel MS PET coil was developed with an integrated RF-shielded PET detector module. For comparison, we also studied a conventional MS coil with a single-layer ground conductor. A lutetium fine silicate (LFS) scintillation crystal block (14 × 14 × 4-layer) with a silicon photomultiplier (Hamamatsu Photonics K.K., Shizuoka, Japan) and a front-end readout circuit board were mounted inside the shield cage of the MS PET coil. The MS PET coil was studied with and without PET detectors. All three coil configurations were studied with a homogeneous phantom in a 7T MRI system (Siemens Healthineers, Erlangen, Germany). PET data measurements were conducted using a Cesium-137 radiation point source. RESULTS: The MR images were similar for the MS coil and the empty MS PET coil, as well as for the cases of MS PET coil with and without PET measurements. Compared to the empty MS PET coil (without PET detector and cable RF shield), decreases in SNR, increases in image noise and RF power, and a slight decrease in resonance frequency were seen for the case of the MS PET coil with the detector and cable shield. Differences in the PET energy histograms or in the crystal identification maps with and without MRI measurements were negligible. CONCLUSIONS: Both the MRI and PET performances of the MS PET coil showed responses that matched the MS coil responses. The performance variations of MRI data with and without PET measurement and PET data with and without MR imaging were negligible.
RESUMEN
OBJECTIVE: Hepatic fibrosis has recently been evaluated using ultrasonography or magnetic resonance elastography. Although the shear wave velocity (SWV) obtained using point shear wave elastography (pSWE) provides a valuable measure of fibrosis, underlying steatosis may affect its measurement. METHODS: Using hepatic fibrosis samples, this study evaluated the effect of steatosis on the shear wave velocity of pSWE (Vs) and viscoelastic properties (assessed by dynamic mechanical analysis) of rat liver. Fifty rats with various grades of steatosis and fibrosis underwent open abdominal in vivo Vs measurements using a commercial ultrasound scanner. The mechanical properties of hepatic tissue were also characterized under ex vivo conditions using dynamic mechanical analysis and the Zener model of viscoelasticity. RESULTS: Fibrosis and steatosis progression influenced Vs and elasticity. The SWV computed using the Zener model and Vs showed a substantial correlation (r > 0.8). Fibrosis progression increased SWV. Steatosis was also related to SWV. Steatosis progression obscured the SWV change associated with fibrosis progression. CONCLUSION: We conclude that steatosis progression affects the evaluation of fibrosis progression. This finding could aid discrimination of non-alcoholic steatohepatitis from non-alcoholic fatty liver disease using SWV.
Asunto(s)
Diagnóstico por Imagen de Elasticidad , Enfermedad del Hígado Graso no Alcohólico , Ratas , Animales , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/complicaciones , Hígado/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/diagnóstico por imagen , Enfermedad del Hígado Graso no Alcohólico/complicaciones , FibrosisRESUMEN
The purpose of this study is to evaluate the RF field responses of partial-ring RF-shielded oval-shaped positron emission tomography (PET) inserts that are used in combination with an MRI body RF coil. Partial-ring PET insert is particularly suitable for interventional investigation (e.g., trimodal PET/MRI/ultrasound imaging) and intraoperative (e.g., robotic surgery) PET/MRI studies. In this study, we used electrically floating Faraday RF shield cages to construct different partial-ring configurations of oval and cylindrical PET inserts and performed experiments on the RF field, spin echo and gradient echo images for a homogeneous phantom in a 3 T clinical MRI system. For each geometry, partial-ring configurations were studied by removing an opposing pair or a single shield cage from different positions of the PET ring. Compared to the MRI-only case, reduction in mean RF homogeneity, flip angle, and SNR for the detector opening in the first and third quadrants was approximately 13%, 15%, and 43%, respectively, whereas the values were 8%, 23%, and 48%, respectively, for the detector openings in the second and fourth quadrants. The RF field distribution also varied for different partial-ring configurations. It can be concluded that the field penetration was high for the detector openings in the first and third quadrants of both the inserts.
Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Diseño de Equipo , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Ondas de RadioRESUMEN
Charged particle beams induce various biological effects by creating high-density ionization through the deposition of energy along the beam's trajectory. Charged particle beams composed of neon ions (20 Ne10+ ) hold great potential for biomedical applications, but their physiological effects on living organs remain uncertain. In this study, we demonstrate that neon-ion beams expedite the process of reoxygenation in tumor models. We simulated mouse SCCVII syngeneic tumors and exposed them to either X-ray or neon-ion beams. Through an in vivo radiobiological assay, we observed a reduction in the hypoxic fraction in tumors irradiated with 8.2 Gy of neon-ion beams 30 h after irradiation compared to 6 h post-irradiation. Conversely, no significant changes in hypoxia were observed in tumors irradiated with 8.2 Gy of X-rays. To directly quantify hypoxia in the irradiated living tumors, we utilized dynamic contrast-enhanced magnetic resonance imaging (MRI) and diffusion-weighted imaging. These combined MRI techniques revealed that the non-hypoxic fraction in neon-irradiated tumors was significantly higher than that in X-irradiated tumors (69.53% vs. 47.67%). Simultaneously, the hypoxic fraction in neon-ion-irradiated tumors (2.77%) was lower than that in X-irradiated tumors (4.27%) and non-irradiated tumors (32.44%). These results support the notion that accelerated reoxygenation occurs more effectively with neon-ion beam irradiation compared to X-rays. These findings shed light on the physiological effects of neon-ion beams on tumors and their microenvironment, emphasizing the therapeutic advantage of using neon-ion charged particle beams to manipulate tumor reoxygenation.
Asunto(s)
Neoplasias , Ratones , Animales , Neón , Iones , Hipoxia , Microambiente TumoralRESUMEN
PURPOSE: To perform an MRI compatibility study of an RF field-penetrable oval-shaped PET insert that implements an MRI built-in body RF coil both as a transmitter and a receiver. METHODS: Twelve electrically floating RF shielded PET detector modules were used to construct the prototype oval PET insert with a major axis of 440 mm, a minor axis of 350 mm, and an axial length of 225 mm. The electric floating of the PET detector modules was accomplished by isolating the cable shield from the detector shield using plastic tape. Studies were conducted on the transmit (B1) RF field, the image signal-to-noise ratio (SNR), and the RF pulse amplitude for a homogeneous cylindrical (diameter: 160 mm and length: 260 mm) phantom (NaCl + NiSO4 solution) in a 3 T clinical MRI system (Verio, Siemens, Erlangen, Germany). RESULTS: The B1 maps for the oval insert were similar to the MRI-only field responses. Compared to the MRI-only values, SNR reductions of 51%, 45%, and 59% were seen, respectively, for the spin echo (SE), gradient echo (GE), and echo planar (EPI) images for the case of oval PET insert. Moreover, the required RF pulse amplitudes for the SE, GE, and EPI sequences were, respectively, 1.93, 1.85, and 1.36 times larger. However, a 30% reduction in the average RF reception sensitivity was observed for the oval insert. CONCLUSIONS: The prototype floating PET insert was a safety concern for the clinical MRI system, and this compatibility study provided clearance for developing a large body size floating PET insert for the existing MRI system. Because of the RF shield of the insert, relatively large RF powers compared to the MRI-only case were required. Because of this and also due to low RF sensitivity of the body coil, the SNRs reduced largely.
Asunto(s)
Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Ondas de Radio , Relación Señal-RuidoRESUMEN
ABSTRACT: Magnetic resonance imaging (MRI) is a crucial imaging technique for visualizing water in living organisms. Besides proton MRI, which is widely available and enables direct visualization of intrinsic water distribution and dynamics in various environments, MR-WTI (MR water tracer imaging) using 17 O-labeled water has been developed, benefiting from the many advancements in MRI software and hardware that have substantially improved the signal-to-noise ratio and made possible faster imaging. This cutting-edge technique allows the generation of novel and valuable images for clinical use. This review elucidates the studies related to MRI water tracer techniques centered around 17 O-labeled water, explaining the fundamental principles of imaging and providing clinical application examples. Anticipating continued progress in studies involving isotope-labeled water, this review is expected to contribute to elucidating the pathophysiology of various diseases related to water dynamics abnormalities and establishing novel imaging diagnostic methods for associated diseases.
Asunto(s)
Imagen por Resonancia Magnética , Programas Informáticos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodosRESUMEN
OBJECTIVE: Increasing evidence suggests that reactive astrocytes are associated with Alzheimer's disease (AD). However, its underlying pathogenesis remains unknown. Given the role of astrocytes in energy metabolism, reactive astrocytes may contribute to altered brain energy metabolism. Astrocytes are primarily considered glycolytic cells, suggesting a preference for lactate production. This study aimed to examine alterations in astrocytic activities and their association with brain lactate levels in AD. METHODS: The study included 30 AD and 30 cognitively unimpaired participants. For AD participants, amyloid and tau depositions were confirmed by positron emission tomography using [11 C]PiB and [18 F]florzolotau, respectively. Myo-inositol, an astroglial marker, and lactate in the posterior cingulate cortex were quantified by magnetic resonance spectroscopy. These magnetic resonance spectroscopy metabolites were compared with plasma biomarkers, including glial fibrillary acidic protein as another astrocytic marker, and amyloid and tau positron emission tomography. RESULTS: Myo-inositol and lactate levels were higher in AD patients than in cognitively unimpaired participants (p < 0.05). Myo-inositol levels correlated with lactate levels (r = 0.272, p = 0.047). Myo-inositol and lactate levels were positively associated with the Clinical Dementia Rating sum-of-boxes scores (p < 0.05). Significant correlations were noted between myo-inositol levels and plasma glial fibrillary acidic protein, tau phosphorylated at threonine 181 levels, and amyloid and tau positron emission tomography accumulation in the posterior cingulate cortex (p < 0.05). INTERPRETATION: We found high myo-inositol levels accompanied by increased lactate levels in the posterior cingulate cortex in AD patients, indicating a link between reactive astrocytes and altered brain energy metabolism. Myo-inositol and plasma glial fibrillary acidic protein may reflect similar astrocytic changes as biomarkers of AD. ANN NEUROL 2023.
RESUMEN
Increased excitatory neuronal tones have been implicated in autism, but its mechanism remains elusive. The amplified glutamate signals may arise from enhanced glutamatergic circuits, which can be affected by astrocyte activation and suppressive signaling of dopamine neurotransmission. We tested this hypothesis using magnetic resonance spectroscopy and positron emission tomography scan with 11C-SCH23390 for dopamine D1 receptors in the anterior cingulate cortex (ACC). We enrolled 18 male adults with high-functioning autism and 20 typically developed (TD) male subjects. The autism group showed elevated glutamate, glutamine, and myo-inositol (mI) levels compared with the TD group (p = 0.045, p = 0.044, p = 0.030, respectively) and a positive correlation between glutamine and mI levels in the ACC (r = 0.54, p = 0.020). In autism and TD groups, ACC D1 receptor radioligand binding was negatively correlated with ACC glutamine levels (r = - 0.55, p = 0.022; r = - 0.58, p = 0.008, respectively). The enhanced glutamate-glutamine metabolism might be due to astroglial activation and the consequent reinforcement of glutamine synthesis in autistic brains. Glutamine synthesis could underly the physiological inhibitory control of dopaminergic D1 receptor signals. Our findings suggest a high neuron excitation-inhibition ratio with astrocytic activation in the etiology of autism.
Asunto(s)
Trastorno Autístico , Glutamina , Masculino , Adulto , Humanos , Glutamina/metabolismo , Ácido Glutámico/metabolismo , Trastorno Autístico/metabolismo , Astrocitos/metabolismo , Dopamina/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/metabolismoRESUMEN
Patients with progressive supranuclear palsy (PSP) frequently exhibit apathy but the neuropathological processes leading to this phenotype remain elusive. We aimed to examine the involvement of tau protein depositions, oxidative stress (OS), and neuronal loss in the apathetic manifestation of PSP. Twenty patients with PSP and twenty-three healthy controls were enrolled. Tau depositions and brain volumes were evaluated via positron-emission tomography (PET) using a specific probe, 18F-PM-PBB3, and magnetic resonance imaging, respectively. Glutathione (GSH) levels in the anterior and posterior cingulate cortices were quantified by magnetic resonance spectroscopy. Tau pathologies were observed in the subcortical and cortical structures of the patient brains. The angular gyrus exhibited a positive correlation between tau accumulations and apathy scale (AS). Although PSP cases did not show GSH level alterations compared with healthy controls, GSH levels in posterior cingulate cortex were correlated with AS and tau depositions in the angular gyrus. Marked atrophy was observed in subcortical areas, and gray matter volumes in the inferior frontal gyrus and anterior cingulate cortex were positively correlated with AS but showed no correlation with tau depositions and GSH levels. Path analysis highlighted synergistic contributions of tau pathologies and GSH reductions in the posterior cortex to AS, in parallel with associations of gray matter atrophy in the anterior cortex with AS. Apathetic phenotypes may arise from PET-visible tau aggregation and OS compromising the neural circuit resilience in the posterior cortex, along with neuronal loss, with neither PET-detectable tau pathologies nor OS in the anterior cortex.
Asunto(s)
Apatía , Parálisis Supranuclear Progresiva , Humanos , Proteínas tau/metabolismo , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Parálisis Supranuclear Progresiva/complicaciones , Encéfalo/patología , Tomografía de Emisión de Positrones/métodos , Estrés OxidativoRESUMEN
BACKGROUND: Visualization of aqueous humor flow in MR contrast images using gadolinium is challenging because of the delayed contrast effects associated with the blood-retinal and blood-aqueous humor barriers. However, oxygen-17 water (H2 17 O) might be used as an ocular contrast agent. PURPOSE: To observe the distribution of H2 17 O in the human eye, and its flow in and out of the anterior chamber, using dynamic T2-weighted MRI. STUDY TYPE: Prospective. POPULATION: Six ophthalmologically normal volunteers (20-37 years, six females). FIELD STRENGTH/SEQUENCE: A 3 T/dynamic T2-weighted MRI. ASSESSMENT: H2 17 O eye drops were administered to the right eye. Time-series images were created by subtracting the image before the eye drops from each of the images obtained after the eye drops. The normalized signal intensity of the right anterior chamber (nAC) was obtained by dividing the signal intensity of the right anterior chamber region by that of the left. The inflow and outflow constants of H2 17 O and H2 17 O concentration were calculated from the nAC. STATISTICAL TESTS: A paired t-test was used to compare the flow-related values and temporal changes in signal intensity. P-values < 0.05 were considered statistically significant. RESULTS: Significantly decreased signal intensity was observed in the right anterior chamber but not the right vitreous body (P = 0.39). The nAC signal intensity decreased significantly and then recovered. The inflow and outflow constants were 0.36-0.94 min-1 and 0.023-0.13 min-1 , respectively. The maximum H2 17 O concentration was 0.078%-0.24%. DATA CONCLUSION: H2 17 O were distributed in the anterior chamber. The H2 17 O inflow into the anterior chamber was significantly faster than that of the outflow. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.
Asunto(s)
Humor Acuoso , Movimientos del Agua , Femenino , Humanos , Soluciones Oftálmicas , Estudios Prospectivos , Imagen por Resonancia Magnética/métodosRESUMEN
Introduction: Previous neuroimaging studies in social anxiety disorders (SAD) have reported potential neural predictors of cognitive behavioral therapy (CBT)-related brain changes. However, several meta-analyses have demonstrated that cognitive therapy (CT) was superior to traditional exposure-based CBT for SAD. Objective: To explore resting-state functional connectivity (rsFC) to evaluate the response to individual CT for SAD patients. Methods: Twenty SAD patients who attended 16-week individual CT were scanned pre- and post-therapy along with twenty healthy controls (HCs). The severity of social anxiety was assessed with the Liebowitz Social Anxiety Scale (LSAS). Multi-voxel pattern analysis (MVPA) was performed on the pre-CT data to extract regions associated with a change in LSAS (∆LSAS). Group comparisons of the seed-based rsFC analysis were performed between the HCs and pre-CT patients and between the pre-and post-CT patients. Results: MVPA-based regression analysis revealed that rsFC between the left thalamus and the frontal pole/inferior frontal gyrus was significantly correlated with ∆LSAS (adjusted R2 = 0.65; p = 0.00002). Compared with HCs, the pre-CT patients had higher rsFCs between the thalamus and temporal pole and between the thalamus and superior/middle temporal gyrus/planum temporale (p < 0.05). The rsFC between the thalamus and the frontal pole decreased post-CT (p < 0.05). Conclusion: SAD patients had significant rsFC between the thalamus and temporal pole, superior/middle temporal gyrus, and planum temporale, which may be indicators of extreme anxiety in social situations. In addition, rsFC between the thalamus and the frontal pole may be a neuromarker for the effectiveness of individual CT.
RESUMEN
Contrast-enhanced imaging for choroidal malignant melanoma (CMM) is mostly limited to detecting metastatic tumors, possibly due to difficulties in fixing the eye position. We aimed to (1) validate the appropriateness of estimating iodine concentration based on dual-energy computed tomography (DECT) for CMM and optimize the calculation parameters for estimation, and (2) perform a primary clinical validation by assessing the ability of this technique to show changes in CMM after charged-particle radiation therapy. The accuracy of the optimized estimate (eIC_optimized) was compared to an estimate obtained by commercial software (eIC_commercial) by determining the difference from the ground truth. Then, eIC_optimized, tumor volume, and CT values (80 kVp, 140 kVp, and synthesized 120 kVp) were measured at pre-treatment and 3 months and 1.5−2 years after treatment. The difference from the ground truth was significantly smaller in eIC_optimized than in eIC_commercial (p < 0.01). Tumor volume, CT values, and eIC_optimized all decreased significantly at 1.5−2 years after treatment, but only eIC_commercial showed a significant reduction at 3 months after treatment (p < 0.01). eIC_optimized can quantify contrast enhancement in primary CMM lesions and has high sensitivity for detecting the response to charged-particle radiation therapy, making it potentially useful for treatment monitoring.
RESUMEN
Functional magnetic resonance imaging (fMRI) evaluates brain activity using blood oxygenation level-dependent (BOLD) contrast. Resting-state fMRI (rsfMRI) examines spontaneous brain function using BOLD in the absence of a task, and the default mode network (DMN) has been identified from that. The DMN is a set of nodes within the brain that appear to be active and in communication when the subject is in an awake resting state. In addition to signal changes related to neural activity, it is thought that the BOLD signal may be affected by systemic low-frequency oscillations (SysLFOs) that are non-neuronal in source and likely propagate throughout the brain to arrive at different regions at different times. However, it may be difficult to distinguish between the response due to neuronal activity and the arrival of a SysLFO in specific regions. Conventional single-shot EPI (Conv) acquisition requires a longish repetition time, but faster image acquisition has recently become possible with multiband excitation EPI (MB). In this study, we evaluated the time-lag between nodes of the DMN using both Conv and MB protocols to determine whether it is possible to distinguish between neuronal activity and SysLFO related responses during rsfMRI. While the Conv protocol data suggested that SysLFOs substantially influence the apparent time-lag of neuronal activity, the MB protocol data implied that the effects of SysLFOs and neuronal activity on the BOLD response may be separated. Using a higher time-resolution acquisition for rsfMRI might help to distinguish neuronal activity induced changes to the BOLD response from those induced by non-neuronal sources.
RESUMEN
Objectives: Positron emission tomography (PET) with [11C]raclopride has been applied to measure changes in the concentration of endogenous dopamine induced by pharmacological challenge or neuropsychological stimulation by evaluating the binding potential (BP) between the baseline and activated state. Recently, to reliably estimate BP in the activated state, a new approach with dual-bolus injections in a single PET scan was developed. In this study, we investigated the feasibility of applying this dual-bolus injection approach to measure changes in endogenous dopamine levels induced by cognitive tasks in humans. Methods: First, the reproducibility of BP estimation using the dual-bolus injection approach was evaluated using PET scans without stimulation in nine healthy volunteers. A 90-min scan was performed with bolus injections of [11C]raclopride administered at the beginning of the scan and 45 min after the first injection. BPs in the striatum for the first injection (BP1) and second injection (BP2) were estimated using an extended simplified reference tissue model, and the mean absolute difference (MAD) between the two BPs was calculated. The MAD was also compared with the conventional bolus-plus-continuous infusion approach. Next, PET studies with a cognitive reinforcement learning task were performed on 10 healthy volunteers using the dual-bolus injection approach. The BP1 at baseline and BP2 at the activated state were estimated, and the reduction in BP was evaluated. Results: In the PET scans without stimulation, the dual-bolus injection approach showed a smaller MAD (<2%) between BP1 and BP2 than the bolus-plus-continuous infusion approach, demonstrating good reproducibility of this approach. In the PET scans with the cognitive task performance, the reduction in BP was not observed in the striatum by either approach, showing that the changes in dopamine level induced by the cognitive tasks performed in this study were not sufficient to be detected by PET. Conclusion: Our results indicate that the cognitive task-induced changes in dopamine-related systems may be complex and difficult to measure accurately using PET scans. However, the proposed dual-bolus injection approach provided reliable BP estimates with high reproducibility, suggesting that it has the potential to improve the accuracy of PET scans for measuring changes in dopamine concentrations.
RESUMEN
The spatial resolution of fMRI is relatively poor and improvements are needed to indicate more specific locations for functional activities. Here, we propose a novel scheme, called Static T2*WI-based Subject-Specific Super Resolution fMRI (STSS-SRfMRI), to enhance the functional resolution, or ability to discriminate spatially adjacent but functionally different responses, of fMRI. The scheme is based on super-resolution generative adversarial networks (SRGAN) that utilize a T2*-weighted image (T2*WI) dataset as a training reference. The efficacy of the scheme was evaluated through comparison with the activation maps obtained from the raw unpreprocessed functional data (raw fMRI). MRI images were acquired from 30 healthy volunteers using a 3 Tesla scanner. The modified SRGAN reconstructs a high-resolution image series from the original low-resolution fMRI data. For quantitative comparison, several metrics were calculated for both the STSS-SRfMRI and the raw fMRI activation maps. The ability to distinguish between two different finger-tapping tasks was significantly higher [p = 0.00466] for the reconstructed STSS-SRfMRI images than for the raw fMRI images. The results indicate that the functional resolution of the STSS-SRfMRI scheme is superior, which suggests that the scheme is a potential solution to realizing higher functional resolution in fMRI images obtained using 3T MRI.
Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodosRESUMEN
The purpose of this study was to compare parameter estimates for the 2-compartment and diffusion kurtosis imaging models obtained from diffusion-weighted imaging (DWI) of aquaporin-4 (AQP4) expression-controlled cells, and to look for biomarkers that indicate differences in the cell membrane water permeability. DWI was performed on AQP4-expressing and non-expressing cells and the signal was analyzed with the 2-compartment and diffusion kurtosis imaging models. For the 2-compartment model, the diffusion coefficients (Df, Ds) and volume fractions (Ff, Fs, Ff = 1-Fs) of the fast and slow compartments were estimated. For the diffusion kurtosis imaging model, estimates of the diffusion kurtosis (K) and corrected diffusion coefficient (D) were obtained. For the 2-compartment model, Ds and Fs showed clear differences between AQP4-expressing and non-expressing cells. Fs was also sensitive to cell density. There was no clear relationship with the cell type for the diffusion kurtosis imaging model parameters. Changes to cell membrane water permeability due to AQP4 expression affected DWI of cell suspensions. For the 2-compartment and diffusion kurtosis imaging models, Ds was the parameter most sensitive to differences in AQP4 expression.
Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagen de Difusión Tensora , Acuaporina 4/metabolismo , Difusión , Imagen de Difusión por Resonancia Magnética/métodos , Agua/metabolismoRESUMEN
PURPOSE: The positron emission tomography (PET) insert for a magnetic resonance imaging (MRI) system that implements the radiofrequency (RF) built-in body coil of the MRI system as a transmitter is designed to be RF-transparent, as the coil resides outside the RF-shielded PET ring. This approach reduces the design complexities (e.g., large PET ring diameter) related to implementing a transmit coil inside the PET ring. However, achieving the required field transmission into the imaging region of interest (ROI) becomes challenging because of the RF shield of the PET insert. In this study, a modularly RF-shielded PET insert is used to investigate the RF transparency considering two electrical configurations of the RF shield, namely the electrical floating and ground configurations. The purpose is to find the differences, advantages and disadvantages of these two configurations. METHODS: Eight copper-shielded PET detector modules (intermodular gap: 3 mm) were oriented cylindrically with an inner diameter of 234 mm. Each PET module included four-layer Lutetium-yttrium oxyorthosilicate scintillation crystal blocks and front-end readout electronics. RF-shielded twisted-pair cables were used to connect the front-end electronics with the power sources and PET data acquisition systems located outside the MRI room. In the ground configuration, both the detector and cable shields were connected to the RF ground of the MRI system. In the floating configuration, only the RF shields of the PET modules were isolated from the RF ground. Experiments were conducted using two cylindrical homogeneous phantoms in a 3 T clinical MRI system, in which the built-in body RF coil (a cylindrical volume coil of diameter 700 mm and length 540 mm) was implemented as a transceiver. RESULTS: For both PET configurations, the RF and MR imaging performances were lower than those for the MRI-only case, and the MRI system provided specific absorption ratio (SAR) values that were almost double. The RF homogeneity and field strength, and the signal-to-noise ratio (SNR) of the MR images were mostly higher for the floating PET configuration than they were for the ground PET configuration. However, for a shorter axial field-of-view (FOV) of 125 mm, both configurations offered almost the same performance with high RF homogeneities (e.g., 76 ± 10%). Moreover, for both PET configurations, 56 ± 6% larger RF pulse amplitudes were required for MR imaging purposes. The increased power is mostly absorbed in the conductive shields in the form of shielding RF eddy currents; as a result, the SAR values only in the phantoms were estimated to be close to the MRI-only values. CONCLUSIONS: The floating PET configuration showed higher RF transparency under all experimental setups. For a relatively short axial FOV of 125 mm, the ground configuration also performed well which indicated that an RF-penetrable PET insert with the conventional design (e.g., the ground configuration) might also become possible. However, some design modifications (e.g., a wider intermodular gap and using the RF receiver coil inside the PET insert) should improve the RF performance to the level of the MRI-only case.