Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 34, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635368

RESUMEN

TGFßs, BMPs and Activins regulate numerous developmental and homeostatic processes and signal through hetero-tetrameric receptor complexes composed of two types of serine/threonine kinase receptors. Each of the 33 different ligands possesses unique affinities towards specific receptor types. However, the lack of specific tools hampered simultaneous testing of ligand binding towards all BMP/TGFß receptors. Here we present a N-terminally Halo- and SNAP-tagged TGFß/BMP receptor library to visualize receptor complexes in dual color. In combination with fluorescently labeled ligands, we established a Ligand Surface Binding Assay (LSBA) for optical quantification of receptor-dependent ligand binding in a cellular context. We highlight that LSBA is generally applicable to test (i) binding of different ligands such as Activin A, TGFß1 and BMP9, (ii) for mutant screens and (iii) evolutionary comparisons. This experimental set-up opens opportunities for visualizing ligand-receptor binding dynamics, essential to determine signaling specificity and is easily adaptable for other receptor signaling pathways.


Asunto(s)
Proteínas Morfogenéticas Óseas , Factor de Crecimiento Transformador beta , Factor de Crecimiento Transformador beta/metabolismo , Receptores de Proteínas Morfogenéticas Óseas , Ligandos , Proteínas Morfogenéticas Óseas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta
2.
BMC Biol ; 20(1): 210, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36171573

RESUMEN

BACKGROUND: Fluid shear stress enhances endothelial SMAD1/5 signaling via the BMP9-bound ALK1 receptor complex supported by the co-receptor Endoglin. While moderate SMAD1/5 activation is required to maintain endothelial quiescence, excessive SMAD1/5 signaling promotes endothelial dysfunction. Increased BMP signaling participates in endothelial-to-mesenchymal transition and inflammation culminating in vascular diseases such as atherosclerosis. While the function of Endoglin has so far been described under picomolar concentrations of BMP9 and short-term shear application, we investigated Endoglin under physiological BMP9 and long-term pathophysiological shear conditions. RESULTS: We report here that knock-down of Endoglin leads to exacerbated SMAD1/5 phosphorylation and atheroprone gene expression profile in HUVECs sheared for 24 h. Making use of the ligand-trap ALK1-Fc, we furthermore show that this increase is dependent on BMP9/10. Mechanistically, we reveal that long-term exposure of ECs to low laminar shear stress leads to enhanced Endoglin expression and endocytosis of Endoglin in Caveolin-1-positive early endosomes. In these endosomes, we could localize the ALK1-Endoglin complex, labeled BMP9 as well as SMAD1, highlighting Caveolin-1 vesicles as a SMAD signaling compartment in cells exposed to low atheroprone laminar shear stress. CONCLUSIONS: We identified Endoglin to be essential in preventing excessive activation of SMAD1/5 under physiological flow conditions and Caveolin-1-positive early endosomes as a new flow-regulated signaling compartment for BMP9-ALK1-Endoglin signaling axis in atheroprone flow conditions.


Asunto(s)
Caveolina 1 , Factor 2 de Diferenciación de Crecimiento , Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Caveolina 1/metabolismo , Endoglina/genética , Endoglina/metabolismo , Endosomas/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Ligandos , Fosforilación
3.
Mol Biol Cell ; 33(8): ar76, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35594179

RESUMEN

The combination of image analysis and superresolution microscopy methods allows for unprecedented insight into the organization of macromolecular assemblies in cells. Advances in deep learning (DL)-based object recognition enable the automated processing of large amounts of data, resulting in high accuracy through averaging. However, while the analysis of highly symmetric structures of constant size allows for a resolution approaching the dimensions of structural biology, DL-based image recognition may introduce bias. This prohibits the development of readouts for processes that involve significant changes in size or shape of amorphous macromolecular complexes. Here we address this problem by using changes of septin ring structures in single molecule localization-based superresolution microscopy data as a paradigm. We identify potential sources of bias resulting from different training approaches by rigorous testing of trained models using real or simulated data covering a wide range of possible results. In a quantitative comparison of our models, we find that a trade-off exists between measurement accuracy and the range of recognized phenotypes. Using our thus verified models, we find that septin ring size can be explained by the number of subunits they are assembled from alone. Furthermore, we provide a new experimental system for the investigation of septin polymerization.


Asunto(s)
Aprendizaje Profundo , Microscopía , Citoesqueleto/química , Sustancias Macromoleculares , Microscopía/métodos , Septinas/química , Imagen Individual de Molécula/métodos
4.
J Vis Exp ; (175)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34605801

RESUMEN

Transforming Growth Factor ß (TGFß)/Bone Morphogenetic Protein (BMP) signaling is tightly regulated and balanced during the development and homeostasis of the vasculature system Therefore, deregulation in this signaling pathway results in severe vascular pathologies, such as pulmonary artery hypertension, hereditary hemorrhagic telangiectasia, and atherosclerosis. Endothelial cells (ECs), as the innermost layer of blood vessels, are constantly exposed to fluid shear stress (SS). Abnormal patterns of fluid SS have been shown to enhance TGFß/BMP signaling, which, together with other stimuli, induce atherogenesis. In relation to this, atheroprone, low laminar SS was found to enhance TGFß/BMP signaling while atheroprotective, high laminar SS, diminishes this signaling. To efficiently analyze the activation of these pathways, we designed a workflow to investigate the formation of transcription factor complexes under low laminar SS and high laminar SS conditions using a commercially available pneumatic pump system and proximity ligation assay (PLA). Active TGFß/BMP-signaling requires the formation of trimeric SMAD complexes consisting of two regulatory SMADs (R-SMAD); SMAD2/3 and SMAD1/5/8 for TGFß and BMP signaling, respectively) with a common mediator SMAD (co-SMAD; SMAD4). Using PLA targeting different subunits of the trimeric SMAD-complex, i.e., either R-SMAD/co-SMAD or R-SMAD/R-SMAD, the formation of active SMAD transcription factor complexes can be measured quantitatively and spatially using fluorescence microscopy. The usage of flow slides with 6 small parallel channels, that can be connected in series, allows for the investigation of the transcription factor complex formation and inclusion of necessary controls. The workflow explained here can be easily adapted for studies targeting the proximity of SMADs to other transcription factors or to transcription factor complexes other than SMADs, in different fluid SS conditions. The workflow presented here shows a quick and effective way to study the fluid SS induced TGFß/BMP signaling in ECs, both quantitatively and spatially.


Asunto(s)
Células Endoteliales , Factor de Crecimiento Transformador beta , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Transducción de Señal , Factores de Crecimiento Transformadores
5.
Front Bioeng Biotechnol ; 8: 568318, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33195130

RESUMEN

Molecular models have enabled understanding of biological structures and functions and allowed design of novel macro-molecules. Graphical user interfaces (GUIs) in molecular modeling are generally focused on atomic representations, but, especially for proteins, do not usually address designs of complex and large architectures, from nanometers to microns. Therefore, we have developed Elfin UI as a Blender add-on for the interactive design of large protein architectures with custom shapes. Elfin UI relies on compatible building blocks to design single- and multiple-chain protein structures. The software can be used: (1) as an interactive environment to explore building blocks combinations; and (2) as a computer aided design (CAD) tool to define target shapes that guide automated design. Elfin UI allows users to rapidly build new protein shapes, without the need to focus on amino acid sequence, and aims to make design of proteins and protein-based materials intuitive and accessible to researchers and members of the general public with limited expertise in protein engineering.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA