Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Theor Appl Genet ; 137(6): 125, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38727862

RESUMEN

KEY MESSAGE: PHOTOPERIOD-1 homoeologous gene copies play a pivotal role in regulation of flowering time in wheat. Here, we show that their influence also extends to spike and shoot architecture and even impacts root development. The sequence diversity of three homoeologous copies of the PHOTOPERIOD-1 gene in European winter wheat was analyzed by Oxford Nanopore amplicon-based multiplex sequencing and molecular markers in a panel of 194 cultivars representing breeding progress over the past 5 decades. A strong, consistent association with an average 8% increase in grain yield was observed for the PpdA1-Hap1 haplotype across multiple environments. This haplotype was found to be linked in 51% of cultivars to the 2NS/2AS translocation, originally introduced from Aegilops ventricosa, which leads to an overestimation of its effect. However, even in cultivars without the 2NS/2AS translocation, PpdA1-Hap1 was significantly associated with increased grain yield, kernel per spike and kernel per m2 under optimal growth conditions, conferring a 4% yield advantage compared to haplotype PpdA1-Hap4. In contrast to Ppd-B1 and Ppd-D1, the Ppd-A1 gene exhibits novel structural variations and a high number of SNPs, highlighting the evolutionary changes that have occurred in this region over the course of wheat breeding history. Additionally, cultivars carrying the photoperiod-insensitive Ppd-D1a allele not only exhibit earlier heading, but also deeper roots compared to those with photoperiod-sensitive alleles under German conditions. PCR and KASP assays have been developed that can be effectively employed in marker-assisted breeding programs to introduce these favorable haplotypes.


Asunto(s)
Haplotipos , Raíces de Plantas , Triticum , Triticum/genética , Triticum/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Fenotipo , Polimorfismo de Nucleótido Simple , Fitomejoramiento , Fotoperiodo , Genes de Plantas , Marcadores Genéticos
2.
Plant Genome ; 16(2): e20314, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36988043

RESUMEN

Structural variations (SVs) are larger polymorphisms (> 50 bp in length), which consist of insertions, deletions, inversions, duplications, and translocations. They can have a strong impact on agronomical traits and play an important role in environmental adaptation. The development of long-read sequencing technologies, including Oxford Nanopore, allows for comprehensive SV discovery and characterization even in complex polyploid crop genomes. However, many of the SV discovery pipeline benchmarks do not include complex plant genome datasets. In this study, we benchmarked insertion and deletion detection by popular long-read alignment-based SV detection tools for crop plant genomes. We used real and simulated Oxford Nanopore reads for two crops, allotetraploid Brassica napus (oilseed rape) and diploid Solanum lycopersicum (tomato), and evaluated several read aligners and SV callers across 5×, 10×, and 20× coverages typically used in re-sequencing studies. We further validated our findings using maize and soybean datasets. Our benchmarks provide a useful guide for designing Oxford Nanopore re-sequencing projects and SV discovery pipelines for crop plants.


Asunto(s)
Benchmarking , Nanoporos , Análisis de Secuencia de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Genoma de Planta
3.
Plant J ; 113(4): 866-880, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36575585

RESUMEN

Induced mutations are an essential source of genetic variation in plant breeding. Ethyl methanesulfonate (EMS) mutagenesis has been frequently applied, and mutants have been detected by phenotypic or genotypic screening of large populations. In the present study, a rapeseed M2 population was derived from M1 parent cultivar 'Express' treated with EMS. Whole genomes were sequenced from fourfold (4×) pools of 1988 M2 plants representing 497 M2 families. Detected mutations were not evenly distributed and displayed distinct patterns across the 19 chromosomes with lower mutation rates towards the ends. Mutation frequencies ranged from 32/Mb to 48/Mb. On average, 284 442 single nucleotide polymorphisms (SNPs) per M2 DNA pool were found resulting from EMS mutagenesis. 55% of the SNPs were C → T and G → A transitions, characteristic for EMS induced ('canonical') mutations, whereas the remaining SNPs were 'non-canonical' transitions (15%) or transversions (30%). Additionally, we detected 88 725 high confidence insertions and deletions per pool. On average, each M2 plant carried 39 120 canonical mutations, corresponding to a frequency of one mutation per 23.6 kb. Approximately 82% of such mutations were located either 5 kb upstream or downstream (56%) of gene coding regions or within intergenic regions (26%). The remaining 18% were located within regions coding for genes. All mutations detected by whole genome sequencing could be verified by comparison with known mutations. Furthermore, all sequences are accessible via the online tool 'EMSBrassica' (http://www.emsbrassica.plantbreeding.uni-kiel.de), which enables direct identification of mutations in any target sequence. The sequence resource described here will further add value for functional gene studies in rapeseed breeding.


Asunto(s)
Brassica napus , Brassica rapa , Brassica napus/genética , Genoma de Planta/genética , Fitomejoramiento , Mutación , Mutagénesis , Metanosulfonato de Etilo/farmacología , Secuenciación Completa del Genoma , Brassica rapa/genética
4.
Front Plant Sci ; 13: 1014282, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438107

RESUMEN

Phaseolus vulgaris L., known as common bean, is one of the most important grain legumes cultivated around the world for its immature pods and dry seeds, which are rich in protein and micronutrients. Common bean offers a cheap food and protein sources to ameliorate food shortage and malnutrition around the world. However, the genetic basis of most important traits in common bean remains unknown. This study aimed at identifying QTL and candidate gene models underlying twenty-six agronomically important traits in common bean. For this, we assembled and phenotyped a diversity panel of 200 P. vulgaris genotypes in the greenhouse, comprising determinate bushy, determinate climbing and indeterminate climbing beans. The panel included dry beans and snap beans from different breeding programmes, elite lines and landraces from around the world with a major focus on accessions of African, European and South American origin. The panel was genotyped using a cost-conscious targeted genotyping-by-sequencing (GBS) platform to take advantage of highly polymorphic SNPs detected in previous studies and in diverse germplasm. The detected single nucleotide polymorphisms (SNPs) were applied in marker-trait analysis and revealed sixty-two quantitative trait loci (QTL) significantly associated with sixteen traits. Gene model identification via a similarity-based approach implicated major candidate gene models underlying the QTL associated with ten traits including, flowering, yield, seed quality, pod and seed characteristics. Our study revealed six QTL for pod shattering including three new QTL potentially useful for breeding. However, the panel was evaluated in a single greenhouse environment and the findings should be corroborated by evaluations across different field environments. Some of the detected QTL and a number of candidate gene models only elucidate the understanding of the genetic nature of these traits and provide the basis for further studies. Finally, the study showed the possibility of using a limited number of SNPs in performing marker-trait association in common bean by applying a highly scalable targeted GBS approach. This targeted GBS approach is a cost-efficient strategy for assessment of the genetic basis of complex traits and can enable geneticists and breeders to identify novel loci and targets for marker-assisted breeding more efficiently.

5.
Front Plant Sci ; 13: 942461, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420025

RESUMEN

The gene VERNALIZATION1 (VRN1) is a key controller of vernalization requirement in wheat. The genome of hexaploid wheat (Triticum aestivum) harbors three homoeologous VRN1 loci on chromosomes 5A, 5B, and 5D. Structural sequence variants including small and large deletions and insertions and single nucleotide polymorphisms (SNPs) in the three homoeologous VRN1 genes not only play an important role in the control of vernalization requirement, but also have been reported to be associated with other yield related traits of wheat. Here we used single-molecule sequencing of barcoded long-amplicons to assay the full-length sequences (∼13 kbp plus 700 bp from the promoter sequence) of the three homoeologous VRN1 genes in a panel of 192 predominantly European winter wheat cultivars. Long read sequences revealed previously undetected duplications, insertions and single-nucleotide polymorphisms in the three homoeologous VRN1 genes. All the polymorphisms were confirmed by Sanger sequencing. Sequence analysis showed the predominance of the winter alleles vrn-A1, vrn-B1, and vrn-D1 across the investigated cultivars. Associations of SNPs and structural variations within the three VRN1 genes with 20 economically relevant traits including yield, nodal root-angle index and quality related traits were evaluated at the levels of alleles, haplotypes, and copy number variants. Cultivars carrying structural variants within VRN1 genes showed lower grain yield, protein yield and biomass compared to those with intact genes. Cultivars carrying a single vrn-A1 copy and a unique haplotype with a high number of SNPs were found to have elevated grain yield, kernels per spike and kernels per m2 along with lower grain sedimentation values. In addition, we detected a novel SNP polymorphism within the G-quadruplex region of the promoter of vrn-A1 that was associated with deeper roots in winter wheat. Our findings show that multiplex, single-molecule long-amplicon sequencing is a useful tool for detecting variants in target genes within large plant populations, and can be used to simultaneously assay sequence variants among target multiple gene homoeologs in polyploid crops. Numerous novel VRN1 haplotypes and alleles were identified that showed significantly associations to economically important traits. These polymorphisms were converted into PCR or KASP assays for use in marker-assisted breeding.

6.
Methods Mol Biol ; 2481: 287-310, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35641771

RESUMEN

Array-based SNP markers are commonly used in genome-wide association studies (GWAS) to identify genomic regions involved in important agronomical traits. However, conversion of these SNP markers into breeder-friendly kompetitive allele-specific PCR (KASP) markers for use in marker-assisted selection is often challenging. In this chapter we describe general considerations and successfully applied protocols for the conversion of Illumina array SNP markers into locus-specific KASP markers with a special emphasis and examples on how to overcome difficulties in polyploid wheat.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Alelos , Genotipo , Reacción en Cadena de la Polimerasa/métodos
7.
Theor Appl Genet ; 135(11): 3917-3946, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35294574

RESUMEN

In the past, breeding for incorporation of insect pest resistance or tolerance into cultivars for use in integrated pest management schemes in oilseed rape/canola (Brassica napus) production has hardly ever been approached. This has been largely due to the broad availability of insecticides and the complexity of dealing with high-throughput phenotyping of insect performance and plant damage parameters. However, recent changes in the political framework in many countries demand future sustainable crop protection which makes breeding approaches for crop protection as a measure for pest insect control attractive again. At the same time, new camera-based tracking technologies, new knowledge-based genomic technologies and new scientific insights into the ecology of insect-Brassica interactions are becoming available. Here we discuss and prioritise promising breeding strategies and direct and indirect breeding targets, and their time-perspective for future realisation in integrated insect pest protection of oilseed rape. In conclusion, researchers and oilseed rape breeders can nowadays benefit from an array of new technologies which in combination will accelerate the development of improved oilseed rape cultivars with multiple insect pest resistances/tolerances in the near future.


Asunto(s)
Brassica napus , Animales , Brassica napus/genética , Genómica , Insectos
8.
Plant Methods ; 18(1): 2, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012581

RESUMEN

BACKGROUND: The incorporation of root traits into elite germplasm is typically a slow process. Thus, innovative approaches are required to accelerate research and pre-breeding programs targeting root traits to improve yield stability in different environments and soil types. Marker-assisted selection (MAS) can help to speed up the process by selecting key genes or quantitative trait loci (QTL) associated with root traits. However, this approach is limited due to the complex genetic control of root traits and the limited number of well-characterised large effect QTL. Coupling MAS with phenotyping could increase the reliability of selection. Here we present a useful framework to rapidly modify root traits in elite germplasm. In this wheat exemplar, a single plant selection (SPS) approach combined three main elements: phenotypic selection (in this case for seminal root angle); MAS using KASP markers (targeting a root biomass QTL); and speed breeding to accelerate each cycle. RESULTS: To develop a SPS approach that integrates non-destructive screening for seminal root angle and root biomass, two initial experiments were conducted. Firstly, we demonstrated that transplanting wheat seedlings from clear pots (for seminal root angle assessment) into sand pots (for root biomass assessment) did not impact the ability to differentiate genotypes with high and low root biomass. Secondly, we demonstrated that visual scores for root biomass were correlated with root dry weight (r = 0.72), indicating that single plants could be evaluated for root biomass in a non-destructive manner. To highlight the potential of the approach, we applied SPS in a backcrossing program which integrated MAS and speed breeding for the purpose of rapidly modifying the root system of elite bread wheat line Borlaug100. Bi-directional selection for root angle in segregating generations successfully shifted the mean root angle by 30° in the subsequent generation (P ≤ 0.05). Within 18 months, BC2F4:F5 introgression lines were developed that displayed a full range of root configurations, while retaining similar above-ground traits to the recurrent parent. Notably, the seminal root angle displayed by introgression lines varied more than 30° compared to the recurrent parent, resulting in lines with both narrow and wide root angles, and high and low root biomass phenotypes. CONCLUSION: The SPS approach enables researchers and plant breeders to rapidly manipulate root traits of future crop varieties, which could help improve productivity in the face of increasing environmental fluctuations. The newly developed elite wheat lines with modified root traits provide valuable materials to study the value of different root systems to support yield in different environments and soil types.

9.
Front Plant Sci ; 12: 749491, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868134

RESUMEN

Blackleg is one of the major fungal diseases in oilseed rape/canola worldwide. Most commercial cultivars carry R gene-mediated qualitative resistances that confer a high level of race-specific protection against Leptosphaeria maculans, the causal fungus of blackleg disease. However, monogenic resistances of this kind can potentially be rapidly overcome by mutations in the pathogen's avirulence genes. To counteract pathogen adaptation in this evolutionary arms race, there is a tremendous demand for quantitative background resistance to enhance durability and efficacy of blackleg resistance in oilseed rape. In this study, we characterized genomic regions contributing to quantitative L. maculans resistance by genome-wide association studies in a multiparental mapping population derived from six parental elite varieties exhibiting quantitative resistance, which were all crossed to one common susceptible parental elite variety. Resistance was screened using a fungal isolate with no corresponding avirulence (AvrLm) to major R genes present in the parents of the mapping population. Genome-wide association studies revealed eight significantly associated quantitative trait loci (QTL) on chromosomes A07 and A09, with small effects explaining 3-6% of the phenotypic variance. Unexpectedly, the qualitative blackleg resistance gene Rlm9 was found to be located within a resistance-associated haploblock on chromosome A07. Furthermore, long-range sequence data spanning this haploblock revealed high levels of single-nucleotide and structural variants within the Rlm9 coding sequence among the parents of the mapping population. The results suggest that novel variants of Rlm9 could play a previously unknown role in expression of quantitative disease resistance in oilseed rape.

10.
Front Plant Sci ; 12: 639631, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936130

RESUMEN

Clubroot, caused by Plasmodiophora brassicae infection, is a disease of growing importance in cruciferous crops, including oilseed rape (Brassica napus). The affected plants exhibit prominent galling of the roots that impairs their capacity for water and nutrient uptake, which leads to growth retardation, wilting, premature ripening, or death. Due to the scarcity of effective means of protection against the pathogen, breeding of resistant varieties remains a crucial component of disease control measures. The key aspect of the breeding process is the identification of genetic factors associated with variable response to the pathogen exposure. Although numerous clubroot resistance loci have been described in Brassica crops, continuous updates on the sources of resistance are necessary. Many of the resistance genes are pathotype-specific, moreover, resistance breakdowns have been reported. In this study, we characterize the clubroot resistance locus in the winter oilseed rape cultivar "Tosca." In a series of greenhouse experiments, we evaluate the disease severity of P. brassicae-challenged "Tosca"-derived population of doubled haploids, which we genotype with Brassica 60 K array and a selection of SSR/SCAR markers. We then construct a genetic map and narrow down the resistance locus to the 0.4 cM fragment on the A03 chromosome, corresponding to the region previously described as Crr3. Using Oxford Nanopore long-read genome resequencing and RNA-seq we review the composition of the locus and describe a duplication of TIR-NBS-LRR gene. Further, we explore the transcriptomic differences of the local genes between the clubroot resistant and susceptible, inoculated and control DH lines. We conclude that the duplicated TNL gene is a promising candidate for the resistance factor. This study provides valuable resources for clubroot resistance breeding programs and lays a foundation for further functional studies on clubroot resistance.

11.
Theor Appl Genet ; 134(4): 1217-1231, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33471161

RESUMEN

KEY MESSAGE: A novel structural variant was discovered in the FLOWERING LOCUS T orthologue BnaFT.A02 by long-read sequencing. Nested association mapping in an elite winter oilseed rape population revealed that this 288 bp deletion associates with early flowering, putatively by modification of binding-sites for important flowering regulation genes. Perfect timing of flowering is crucial for optimal pollination and high seed yield. Extensive previous studies of flowering behavior in Brassica napus (canola, rapeseed) identified mutations in key flowering regulators which differentiate winter, semi-winter and spring ecotypes. However, because these are generally fixed in locally adapted genotypes, they have only limited relevance for fine adjustment of flowering time in elite cultivar gene pools. In crosses between ecotypes, the ecotype-specific major-effect mutations mask minor-effect loci of interest for breeding. Here, we investigated flowering time in a multiparental mapping population derived from seven elite winter oilseed rape cultivars which are fixed for major-effect mutations separating winter-type rapeseed from other ecotypes. Association mapping revealed eight genomic regions on chromosomes A02, C02 and C03 associating with fine modulation of flowering time. Long-read genomic resequencing of the seven parental lines identified seven structural variants coinciding with candidate genes for flowering time within chromosome regions associated with flowering time. Segregation patterns for these variants in the elite multiparental population and a diversity set of winter types using locus-specific assays revealed significant associations with flowering time for three deletions on chromosome A02. One of these was a previously undescribed 288 bp deletion within the second intron of FLOWERING LOCUS T on chromosome A02, emphasizing the advantage of long-read sequencing for detection of structural variants in this size range. Detailed analysis revealed the impact of this specific deletion on flowering-time modulation under extreme environments and varying day lengths in elite, winter-type oilseed rape.


Asunto(s)
Brassica napus/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Proteínas de Plantas/genética , Sitios de Carácter Cuantitativo , Estaciones del Año , Brassica napus/genética , Brassica napus/metabolismo , Mapeo Cromosómico , Flores/genética , Flores/metabolismo , Genómica , Fitomejoramiento , Proteínas de Plantas/metabolismo
12.
Plant Biotechnol J ; 19(2): 240-250, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32737959

RESUMEN

Genome structural variation (SV) contributes strongly to trait variation in eukaryotic species and may have an even higher functional significance than single-nucleotide polymorphism (SNP). In recent years, there have been a number of studies associating large chromosomal scale SV ranging from hundreds of kilobases all the way up to a few megabases to key agronomic traits in plant genomes. However, there have been little or no efforts towards cataloguing small- (30-10 000 bp) to mid-scale (10 000-30 000 bp) SV and their impact on evolution and adaptation-related traits in plants. This might be attributed to complex and highly duplicated nature of plant genomes, which makes them difficult to assess using high-throughput genome screening methods. Here, we describe how long-read sequencing technologies can overcome this problem, revealing a surprisingly high level of widespread, small- to mid-scale SV in a major allopolyploid crop species, Brassica napus. We found that up to 10% of all genes were affected by small- to mid-scale SV events. Nearly half of these SV events ranged between 100 bp and 1000 bp, which makes them challenging to detect using short-read Illumina sequencing. Examples demonstrating the contribution of such SV towards eco-geographical adaptation and disease resistance in oilseed rape suggest that revisiting complex plant genomes using medium-coverage long-read sequencing might reveal unexpected levels of functional gene variation, with major implications for trait regulation and crop improvement.


Asunto(s)
Brassica napus , Poliploidía , Brassica napus/genética , Resistencia a la Enfermedad/genética , Genoma de Planta/genética , Humanos , Polimorfismo de Nucleótido Simple/genética
13.
Front Plant Sci ; 11: 496, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411167

RESUMEN

Rapeseed (Brassica napus), the second most important oilseed crop globally, originated from an interspecific hybridization between B. rapa and B. oleracea. After this genome collision, B. napus underwent extensive genome restructuring, via homoeologous chromosome exchanges, resulting in widespread segmental deletions and duplications. Illicit pairing among genetically similar homoeologous chromosomes during meiosis is common in recent allopolyploids like B. napus, and post-polyploidization restructuring compounds the difficulties of assembling a complex polyploid plant genome. Specifically, genomic rearrangements between highly similar chromosomes are challenging to detect due to the limitation of sequencing read length and ambiguous alignment of reads. Recent advances in long read sequencing technologies provide promising new opportunities to unravel the genome complexities of B. napus by encompassing breakpoints of genomic rearrangements with high specificity. Moreover, recent evidence revealed ongoing genomic exchanges in natural B. napus, highlighting the need for multiple reference genomes to capture structural variants between accessions. Here we report the first long-read genome assembly of a winter B. napus cultivar. We sequenced the German winter oilseed rape accession 'Express 617' using 54.5x of long reads. Short reads, linked reads, optical map data and high-density genetic maps were used to further correct and scaffold the assembly to form pseudochromosomes. The assembled Express 617 genome provides another valuable resource for Brassica genomics in understanding the genetic consequences of polyploidization, crop domestication, and breeding of recently-formed crop species.

14.
Sci Rep ; 10(1): 4131, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139810

RESUMEN

Although copy number variation (CNV) and presence-absence variation (PAV) have been discovered in selected gene families in most crop species, the global prevalence of these polymorphisms in most complex genomes is still unclear and their influence on quantitatively inherited agronomic traits is still largely unknown. Here we analyze the association of gene PAV with resistance of oilseed rape (Brassica napus) against the important fungal pathogen Verticillium longisporum, as an example for a complex, quantitative disease resistance in the strongly rearranged genome of a recent allopolyploid crop species. Using Single Nucleotide absence Polymorphism (SNaP) markers to efficiently trace PAV in breeding populations, we significantly increased the resolution of loci influencing V. longisporum resistance in biparental and multi-parental mapping populations. Gene PAV, assayed by resequencing mapping parents, was observed in 23-51% of the genes within confidence intervals of quantitative trait loci (QTL) for V. longisporum resistance, and high-priority candidate genes identified within QTL were all affected by PAV. The results demonstrate the prominent role of gene PAV in determining agronomic traits, suggesting that this important class of polymorphism should be exploited more systematically in future plant breeding.


Asunto(s)
Brassica napus/virología , Enfermedades de las Plantas/microbiología , Verticillium/patogenicidad , Variaciones en el Número de Copia de ADN/genética , Resistencia a la Enfermedad/genética , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/genética , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Verticillium/genética
15.
FEMS Microbiol Ecol ; 96(1)2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31769797

RESUMEN

Associations of endophytic bacterial community composition of oilseed rape (Brassica napus L.) with quantitative resistance against the soil-borne fungal pathogen Verticillium longisporum was assessed by 16S rRNA gene amplicon sequencing in roots and hypocotyls of four plant lines with contrasting genetic composition in regard to quantitative resistance reactions. The plant compartment was found to be the dominating driving factor for the specificity of bacterial communities in healthy plants. Furthermore, V. longisporum infection triggered a stabilization of phylogenetic group abundance in replicated samples suggesting a host genotype-specific selection. Genotype-specific associations with bacterial phylogenetic group abundance were identified by comparison of plant genotype groups (resistant versus susceptible) and treatment groups (healthy versus V. longisporum-infected) allowing dissection into constitutive and induced directional association patterns. Relative abundance of Flavobacteria, Pseudomonas, Rhizobium and Cellvibrio was associated with resistance/susceptibility. Relative abundance of Flavobacteria and Cellvibrio was increased in resistant genotypes according to their known ecological functions. In contrast, a higher relative abundance of Pseudomonas and Rhizobium, which are known to harbor many species with antagonistic properties to fungal pathogens, was found to be associated with susceptibility, indicating that these groups do not play a major role in genetically controlled resistance of oilseed rape against V. longisporum.


Asunto(s)
Brassica napus/genética , Brassica napus/microbiología , Resistencia a la Enfermedad/genética , Microbiota , Verticillium/fisiología , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Genotipo , Especificidad del Huésped , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , ARN Ribosómico 16S/genética
16.
Front Neurol ; 9: 783, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30283398

RESUMEN

Progressive hearing loss is a common phenomenon in healthy aging and may affect the perception of emotions expressed in speech. Elderly with mild to moderate hearing loss often rate emotional expressions as less emotional and display reduced activity in emotion-sensitive brain areas (e.g., amygdala). However, it is not clear how hearing loss affects cognitive and emotional control mechanisms engaged in multimodal speech processing. In previous work we showed that negative, task-relevant and -irrelevant emotion modulates the two types of control in younger and older adults without hearing loss. To further explore how reduced hearing capacity affects emotional and cognitive control, we tested whether moderate hearing loss (>30 dB) at frequencies relevant for speech impacts cognitive and emotional control. We tested two groups of older adults with hearing loss (HL; N = 21; mean age = 70.5) and without hearing loss (NH; N = 21; mean age = 68.4). In two EEG experiments participants observed multimodal video clips and either categorized pronounced vowels (cognitive conflict) or their emotions (emotional conflict). Importantly, the facial expressions were either matched or mismatched with the corresponding vocalizations. In both conflict tasks, we found that negative stimuli modulated behavioral conflict processing in the NH but not the HL group, while the HL group performed at chance level in the emotional conflict task. Further, we found that the amplitude difference between congruent and incongruent stimuli was larger in negative relative to neutral N100 responses across tasks and groups. Lastly, in the emotional conflict task, neutral stimuli elicited a smaller N200 response than emotional stimuli primarily in the HL group. Consequently, age-related hearing loss not only affects the processing of emotional acoustic cues but also alters the behavioral benefits of emotional stimuli on cognitive and emotional control, despite preserved early neural responses. The resulting difficulties in the multimodal integration of incongruent emotional stimuli may lead to problems in processing complex social information (irony, sarcasm) and impact emotion processing in the limbic network. This could be related to social isolation and depression observed in the elderly with age-related hearing loss.

17.
Sci Rep ; 8(1): 13153, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30177750

RESUMEN

The ongoing global intensification of wheat production will likely be accompanied by a rising pressure of Fusarium diseases. While utmost attention was given to Fusarium head blight (FHB) belowground plant infections of the pathogen have largely been ignored. The current knowledge about the impact of soil borne Fusarium infection on plant performance and the underlying genetic mechanisms for resistance remain very limited. Here, we present the first large-scale investigation of Fusarium root rot (FRR) resistance using a diverse panel of 215 international wheat lines. We obtained data for a total of 21 resistance-related traits, including large-scale Real-time PCR experiments to quantify fungal spread. Association mapping and subsequent haplotype analyses discovered a number of highly conserved genomic regions associated with resistance, and revealed a significant effect of allele stacking on the stembase discoloration. Resistance alleles were accumulated in European winter wheat germplasm, implying indirect prior selection for improved FRR resistance in elite breeding programs. Our results give first insights into the genetic basis of FRR resistance in wheat and demonstrate how molecular parameters can successfully be explored in genomic prediction. Ongoing work will help to further improve our understanding of the complex interactions of genetic factors influencing FRR resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Fusarium/patogenicidad , Genoma de Planta/inmunología , Enfermedades de las Plantas/genética , Triticum/genética , Alelos , Mapeo Cromosómico , Color , Fusarium/fisiología , Haplotipos , Fenotipo , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Raíces de Plantas/genética , Raíces de Plantas/inmunología , Raíces de Plantas/microbiología , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Triticum/inmunología , Triticum/microbiología
18.
Plant Biotechnol J ; 16(12): 2102-2112, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29729219

RESUMEN

Evolutionary processes during plant polyploidization and speciation have led to extensive presence-absence variation (PAV) in crop genomes, and there is increasing evidence that PAV associates with important traits. Today, high-resolution genetic analysis in major crops frequently implements simple, cost-effective, high-throughput genotyping from single nucleotide polymorphism (SNP) hybridization arrays; however, these are normally not designed to distinguish PAV from failed SNP calls caused by hybridization artefacts. Here, we describe a strategy to recover valuable information from single nucleotide absence polymorphisms (SNaPs) by population-based quality filtering of SNP hybridization data to distinguish patterns associated with genuine deletions from those caused by technical failures. We reveal that including SNaPs in genetic analyses elucidate segregation of small to large-scale structural variants in nested association mapping populations of oilseed rape (Brassica napus), a recent polyploid crop with widespread structural variation. Including SNaP markers in genomewide association studies identified numerous quantitative trait loci, invisible using SNP markers alone, for resistance to two major fungal diseases of oilseed rape, Sclerotinia stem rot and blackleg disease. Our results indicate that PAV has a strong influence on quantitative disease resistance in B. napus and that SNaP analysis using cost-effective SNP array data can provide extensive added value from 'missing data'. This strategy might also be applicable for improving the precision of genetic mapping in many important crop species.


Asunto(s)
Mapeo Cromosómico/métodos , Sitios de Carácter Cuantitativo/genética , Brassica napus/genética , Resistencia a la Enfermedad/genética , Variación Genética/genética , Estudio de Asociación del Genoma Completo , Técnicas de Genotipaje/métodos , Polimorfismo de Nucleótido Simple/genética
19.
Front Aging Neurosci ; 9: 349, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29163132

RESUMEN

Healthy aging is characterized by a gradual decline in cognitive control and inhibition of interferences, while emotional control is either preserved or facilitated. Emotional control regulates the processing of emotional conflicts such as in irony in speech, and cognitive control resolves conflict between non-affective tendencies. While negative emotion can trigger control processes and speed up resolution of both cognitive and emotional conflicts, we know little about how aging affects the interaction of emotion and control. In two EEG experiments, we compared the influence of negative emotion on cognitive and emotional conflict processing in groups of younger adults (mean age = 25.2 years) and older adults (69.4 years). Participants viewed short video clips and either categorized spoken vowels (cognitive conflict) or their emotional valence (emotional conflict), while the visual facial information was congruent or incongruent. Results show that negative emotion modulates both cognitive and emotional conflict processing in younger and older adults as indicated in reduced response times and/or enhanced event-related potentials (ERPs). In emotional conflict processing, we observed a valence-specific N100 ERP component in both age groups. In cognitive conflict processing, we observed an interaction of emotion by congruence in the N100 responses in both age groups, and a main effect of congruence in the P200 and N200. Thus, the influence of emotion on conflict processing remains intact in aging, despite a marked decline in cognitive control. Older adults may prioritize emotional wellbeing and preserve the role of emotion in cognitive and emotional control.

20.
Cortex ; 95: 156-168, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28910668

RESUMEN

How specific brain networks track rhythmic sensory input over time remains a challenge in neuroimaging work. Here we show that subcortical areas, namely the basal ganglia and the cerebellum, specifically contribute to the neural tracking of rhythm. We tested patients with focal lesions in either of these areas and healthy controls by means of electroencephalography (EEG) while they listened to rhythmic sequences known to induce selective neural tracking at a frequency corresponding to the most-often perceived pulse-like beat. Both patients and controls displayed neural responses to the rhythmic sequences. However, these response patterns were different across groups, with patients showing reduced tracking at beat frequency, especially for the more challenging rhythms. In the cerebellar patients, this effect was specific to the rhythm played at a fast tempo, which places high demands on the temporally precise encoding of events. In contrast, basal ganglia patients showed more heterogeneous responses at beat frequency specifically for the most complex rhythm, which requires more internal generation of the beat. These findings provide electrophysiological evidence that these subcortical structures selectively shape the neural representation of rhythm. Moreover, they suggest that the processing of rhythmic auditory input relies on an extended cortico-subcortico-cortical functional network providing specific timing and entrainment sensitivities.


Asunto(s)
Percepción Auditiva/fisiología , Ganglios Basales/fisiología , Cerebelo/fisiología , Música , Periodicidad , Ganglios Basales/fisiopatología , Cerebelo/fisiopatología , Electroencefalografía , Femenino , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA