Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
Vaccine ; 42(23): 126242, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39213922

RESUMEN

We established a qualified Madin-Darby canine kidney cell line (qMDCK-Cs) and investigated its suitability for source virus isolation to develop cell-based seasonal influenza vaccine viruses using vaccine manufacturer cells (Manuf-Cs). When inoculated with 81 influenza-positive clinical specimens, the initial virus isolation efficiency of qMDCK-Cs was exceeded 70%. Among the qMDCK-C isolates, 100% of the A/H1N1pdm09, B/Victoria and B/Yamagata strains and >70% of the A/H3N2 strains showed antigenicity equivalent to that of the contemporary vaccine or relevant viruses in haemagglutination inhibition (HI) or virus neutralization (VN) tests using ferret antisera. These qMDCK-C isolates were propagated in Manuf-Cs (MDCK and Vero cells) (Manuf-C viruses) to develop vaccine viruses. In reciprocal antigenicity tests, ferret antisera raised against corresponding reference viruses and Manuf-C viruses recognized 29 of 31 Manuf-C viruses and corresponding reference viruses, respectively at HI or VN titres more than half of the homologous virus titres, which is the antigenicity criterion for cell culture seasonal influenza vaccine viruses specified by the World Health Organization. Furthermore, ferret antisera against these Manuf-C viruses recognized ≥95% of the viruses circulating during the relevant influenza season with HI or VN titres greater than one-quarter of the homologous virus titres. No cell line-specific amino acid substitutions were observed in the resulting viruses. However, polymorphisms at positions 158/160 of H3HA, 148/151 of N2NA and 197/199 of B/Victoria HA were occasionally detected in the qMDCK-C and Manuf-C viruses but barely affected the viral antigenicity. These results indicated that qMDCK-Cs are suitable for isolating influenza viruses that can serve as a source of antigenically appropriate vaccine viruses. The use of the qMDCK-C isolates will eliminates the need for clinical sample collection, virus isolation, and antigenicity analysis every season, and is expected to contribute to the promotion of vaccine virus development using manufacturer cells.

2.
PLoS One ; 18(1): e0280811, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36662890

RESUMEN

Manufactured influenza vaccines have to contain a defined amount of hemagglutinin (HA) antigen. Therefore, vaccine viruses with a high HA antigen yield (HAY) are preferable for manufacturing vaccines, particularly vaccines in response to a pandemic, when vaccines need to be rapidly produced. However, the viral properties associated with a high HAY have not yet been fully clarified. To identify the HAY-associated traits, we first propagated 26 H5 candidate vaccine viruses (CVVs) in eggs, which were previously developed based on genetic reassortment methods using master viruses, to determine their total protein yield (TPY), ratio of HA to total viral protein (%-HA content) and HAY. The results revealed that the HAY was correlated with the TPY but not with the %-HA content. We further found that altering the sequences of the 3' noncoding region of HA vRNA or replacing the master virus improved the HAYs and TPYs of the low-HAY CVVs to approximately double the values of the original CVVs but did not change the %-HA content, which a previous study suggested was associated with the HAY. Analyses based on real-time PCR assays and scanning electron microscopy revealed that the virus samples with an improved HAY contained more copies of the virus genome and viral particles than the original samples. The results suggest that an improvement in virus growth (i.e., an increase in the amount of viral particles) leads to an increase in the TPY and thus in the HAY, regardless of the %-HA content. The approximately twofold increase in the HAY shown in this study may not appear to represent a large improvement, but the impact will be significant given the millions of chicken eggs used to produce vaccines. These findings will be informative for developing high-HAY vaccine viruses.


Asunto(s)
Vacunas contra la Influenza , Orthomyxoviridae , Animales , Hemaglutininas/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza , Pollos , Anticuerpos Antivirales
3.
Microbiol Immunol ; 66(7): 361-370, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35545856

RESUMEN

The practical use of cell-based seasonal influenza vaccines is currently being considered in Japan. From the perspective of adventitious virus contamination, we assessed the suitability of NIID-MDCK cells (NIID-MDCK-Cs) as a safe substrate for the isolation of influenza viruses from clinical specimens. We first established a sensitive multiplex real-time PCR system to screen for 27 respiratory viruses and used it on 34 virus samples that were isolated by passaging influenza-positive clinical specimens in NIID-MDCK-Cs. Incidentally, the limit of detection (LOD) of the system was 100 or fewer genome copies per reaction. In addition to influenza viruses, human enterovirus 68 (HEV-D68) genomes were detected in two samples after two or three passages in NIID-MDCK-Cs. To further investigate the susceptibility of NIID-MDCK-Cs to adventitious viruses, eight common respiratory viruses were subjected to passages in NIID-MDCK-Cs. The genome copy numbers of seven viruses other than parainfluenza 3 decreased below the LOD by passage 4. By passaging in NIID-MDCK-Cs, the genome numbers of the input HEV-D68, 1 × 108 copies, declined to 102 at passage 3 and to under the LOD at passage 4, whereas those of the other six viruses were under the LOD by passage 3. These results implied that during the process of isolating influenza viruses with NIID-MDCK-Cs, contaminating viruses other than parainfluenza 3 can be efficiently removed by passages in NIID-MDCK-Cs. NIID-MDCK-Cs could be a safe substrate for isolating influenza viruses that can be used to develop cell-based influenza vaccine candidate viruses.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Orthomyxoviridae , Infecciones por Paramyxoviridae , Virus , Animales , Perros , Humanos , Vacunas contra la Influenza/genética , Gripe Humana/prevención & control , Células de Riñón Canino Madin Darby , Desarrollo de Vacunas , Cultivo de Virus/métodos
4.
mSphere ; 6(1)2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33408229

RESUMEN

The influenza A(H1N1)pdm09 virus emerged in April 2009 with an unusual incidence of severe disease and mortality, and currently circulates as a seasonal influenza virus. Previous studies using consensus viral genome sequencing data have overlooked the viral genomic and phenotypic diversity. Next-generation sequencing (NGS) may instead be used to characterize viral populations in an unbiased manner and to measure within-host genetic diversity. In this study, we used NGS analysis to investigate the within-host genetic diversity of influenza A(H1N1)pdm09 virus in the upper and lower respiratory samples from nine patients who were admitted to the intensive care unit (ICU). A total of 47 amino acid substitution positions were found to differ between the upper and lower respiratory tract samples from all patients. However, the D222G/N substitution in hemagglutinin (HA) protein was the only amino acid substitution common to multiple patients. Furthermore, the substitution was detected only in the six samples from the lower respiratory tract. Therefore, it is important to investigate influenza A(H1N1)pdm09 virus populations using multiple paired samples from the upper and lower respiratory tract to avoid overlooking potentially important substitutions, especially in patients with severe disease.IMPORTANCE The D222G/N substitution in the hemagglutinin (HA) protein of influenza A(H1N1)pdm09 virus has been reported to be associated with disease severity and mortality in numerous previous studies. In the present study, 75% of lower respiratory samples contained heterogeneous influenza populations that carried different amino acids at position 222 of the HA protein, whereas all upper respiratory samples only contained the wild-type 222D. These results suggest the influenza A(H1N1)pdm09 virus has diversified inside the host owing to differences in tissue specificity. In this study, the within-host genetic diversity of influenza A(H1N1)pdm09 virus was investigated for the first time using next-generation sequencing analysis of the viral whole-genome in samples extracted from the upper and lower respiratory tracts of patients with severe disease.


Asunto(s)
Genoma Viral , Secuenciación de Nucleótidos de Alto Rendimiento , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/virología , Mutación Missense , Filogenia , Sistema Respiratorio/virología , Adulto , Anciano , Sustitución de Aminoácidos , Femenino , Humanos , Subtipo H1N1 del Virus de la Influenza A/clasificación , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Sistema Respiratorio/anatomía & histología , Índice de Severidad de la Enfermedad , Adulto Joven
5.
Biologicals ; 68: 32-39, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33023810

RESUMEN

In Japan, the practical application of completely cell-based seasonal influenza vaccines is under consideration. Considering the good correlation between the immunogenicity of egg-based influenza vaccines and the hemagglutinin (HA) content determined by the single radial immunodiffusion (SRD) assay, we determined the potency of the first cell-based quadrivalent vaccine experimentally generated in Japan using the SRD assay in this study. A primary liquid standard (PLS) and reference antigen were generated from the purified vaccine virus, and a sheep antiserum was produced against the HA of the vaccine virus. Since the purity of the PLS affects the reliability of vaccine potency testing, the purification steps are significant. We successfully prepared a purified PLS nearly free of cell debris. The HA content in the PLS was first estimated from the total amount of viral protein and the percentage of HA content determined by SDS-PAGE analysis. The HA content in the reference antigen was calibrated to that in the PLS via the SRD assay. The vaccine potency, that is, the HA content in each vaccine, was finally measured using the corresponding reference antigen. Ultimately, the measured vaccine potency of the monovalent vaccine was similar to that of the quadrivalent vaccine.


Asunto(s)
Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Estaciones del Año , Tecnología Farmacéutica/métodos , Potencia de la Vacuna , Animales , Anticuerpos Antivirales/inmunología , Perros , Humanos , Sueros Inmunes/inmunología , Vacunas contra la Influenza/normas , Gripe Humana/prevención & control , Gripe Humana/virología , Células de Riñón Canino Madin Darby , Estándares de Referencia , Ovinos , Tecnología Farmacéutica/normas
6.
Pathogens ; 9(9)2020 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-32887429

RESUMEN

Influenza A(H1N1)pdm09 viruses carrying a dual neuraminidase (NA) substitution were isolated from immunocompromised patients after administration of one or more NA inhibitors. These mutant viruses possessed an H275Y/I223R, H275Y/I223K, or H275Y/G147R substitution in their NA and showed enhanced cross-resistance to oseltamivir and peramivir and reduced susceptibility to zanamivir compared to single H275Y mutant viruses. Baloxavir could be a treatment option against the multidrug-resistant viruses because these dual H275Y mutant viruses showed susceptibility to this drug. The G147R substitution appears to stabilize the NA structure, with the fitness of the H275Y/G147R mutant virus being similar or somewhat better than that of the wild-type virus. Since the multidrug-resistant viruses may be able to transmit between humans, surveillance of these viruses must continue to improve clinical management and to protect public health.

7.
BMC Infect Dis ; 20(1): 388, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32487032

RESUMEN

BACKGROUND: Neurogenic pulmonary edema is a rare but serious complication of febrile status epilepticus in children. Comprehensive screening for viral pathogens is seldomly performed in the work-up of febrile children. CASE PRESENTATION: A 22-month-old girl presented with her first episode of febrile status epilepticus, after which she developed acute pulmonary edema and respiratory failure. After the termination of seizure activity, the patient was intubated and managed on mechanical ventilation in the emergency room. The resolution of respiratory failure, as well as the neurological recovery, was achieved 9 h after admission, and the patient was discharged 6 days after admission without any complications. Molecular biological diagnostic methods identified the presence of human coronavirus HKU1, influenza C virus, and human parainfluenza virus 2 from the patient's nasopharyngeal specimens. CONCLUSIONS: Neurogenic pulmonary edema following febrile status epilepticus was suspected to be the etiology of our patient's acute pulmonary edema and respiratory failure. Timely seizure termination and rapid airway and respiratory intervention resulted in favorable outcomes of the patient. Molecular biological diagnostic methods identified three respiratory viruses; however, their relevance and association with clinical symptoms remain speculative.


Asunto(s)
Edema Pulmonar/etiología , Infecciones del Sistema Respiratorio/virología , Enfermedades del Sistema Nervioso Central/etiología , Enfermedades del Sistema Nervioso Central/terapia , Coronavirus/aislamiento & purificación , Infecciones por Coronavirus , Femenino , Fiebre/complicaciones , Humanos , Lactante , Gripe Humana , Gammainfluenzavirus/aislamiento & purificación , Técnicas de Diagnóstico Molecular , Nasofaringe/virología , Virus de la Parainfluenza 2 Humana/aislamiento & purificación , Edema Pulmonar/diagnóstico por imagen , Edema Pulmonar/terapia , Infecciones del Sistema Respiratorio/complicaciones , Estado Epiléptico
8.
PLoS One ; 15(3): e0229601, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32130243

RESUMEN

A community outbreak of human influenza A(H1N1)pdm09 virus strains was observed in Myanmar in 2017. We investigated the circulation patterns, antigenicity, and drug resistance of 2017 influenza A(H1N1)pdm09 viruses from Myanmar and characterized the full genome of influenza virus strains in Myanmar from in-patients and out-patients to assess the pathogenicity of the viruses. Nasopharyngeal swabs were collected from out-patients and in-patients with acute respiratory tract infections in Yangon and Pyinmana City in Myanmar during January-December 2017. A total of 215 out-patients and 18 in-patients infected with A(H1N1)pdm09 were detected by virus isolation and real-time RT-PCR. Among the positive patients, 90.6% were less than 14 years old. Hemagglutination inhibition (HI) antibody titers against A(H1N1)pdm09 viruses in Myanmar were similar to the recommended Japanese influenza vaccine strain for 2017-2018 seasons (A/Singapore/GP1908/2015) and WHO recommended 2017 southern hemisphere vaccine component (A/Michigan/45/2015). Phylogenetic analysis of the hemagglutinin sequence showed that the Myanmar strains belonged to the genetic subclade 6B.1, possessing mutations of S162N and S164T at potential antigenic sites. However, the amino acid mutation at position 222, which may enhance the severity of disease and mortality, was not found. One case with no prior history of oseltamivir treatment possessed H275Y mutated virus in neuraminidase (NA), which confers resistance to oseltamivir and peramivir with elevated IC50 values. The full genome sequence of Myanmar strains showed no difference between samples from in-patients and out-patients, suggesting no additional viral mutations associated with patient severity. Several amino acid changes were observed in PB2, PB1, and M2 of Myanmar strains when compared to the vaccine strain and other Asian strains. However, no mutations associated with pathogenicity were found in the Myanmar strains, suggesting that viral factors cannot explain the underlying reasons of the massive outbreak in Myanmar. This study reported the first detection of an oseltamivir-resistant influenza virus in Myanmar, highlighting the importance of continuous antiviral monitoring and genetic characterization of the influenza virus in Myanmar.


Asunto(s)
Epidemias , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana/epidemiología , Adolescente , Adulto , Sustitución de Aminoácidos , Antígenos Virales , Antivirales/farmacología , Niño , Preescolar , Farmacorresistencia Viral/genética , Femenino , Genoma Viral , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Lactante , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/tratamiento farmacológico , Gripe Humana/virología , Masculino , Persona de Mediana Edad , Mutación Missense , Mianmar/epidemiología , Oseltamivir/farmacología , Filogenia , Adulto Joven
9.
Influenza Other Respir Viruses ; 14(4): 436-443, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32064779

RESUMEN

BACKGROUND: The novel cap-dependent endonuclease inhibitor baloxavir marboxil was approved in February 2018 for the treatment of influenza virus infection in Japan. In vitro studies have revealed that an I38T substitution in the polymerase acidic subunit (PA) is associated with reduced susceptibility of influenza viruses to baloxavir. OBJECTIVES: Development of a rapid and simple method for monitoring influenza A(H1N1)pdm09, A(H3N2), and B viruses possessing the I38T substitution in PA. METHODS: Three assays were developed based on RNase H2-dependent PCR (rhPCR) and named A/H1pdm PA_I38T rhPCR, A/H3 PA_I38T rhPCR, and B PA_I38T rhPCR. The assays were evaluated using cDNAs synthesized from in vitro-transcribed PA gene RNA controls, RNAs purified from viruses isolated in the 2017/2018 and 2018/2019 influenza seasons, and RNAs purified from clinical specimens collected in the 2018/2019 influenza season. RESULTS: The assays developed in this study accurately discriminated PA I38 and PA T38 with high sensitivity. CONCLUSIONS: Our assays should be considered a powerful tool for monitoring the emergence of baloxavir-resistant influenza viruses.


Asunto(s)
Sustitución de Aminoácidos/efectos de los fármacos , Antivirales/farmacología , Dibenzotiepinas/farmacología , Farmacorresistencia Viral/genética , Técnicas de Diagnóstico Molecular/métodos , Morfolinas/farmacología , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/genética , Piridonas/farmacología , Triazinas/farmacología , Sustitución de Aminoácidos/genética , Humanos , Subtipo H1N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H1N1 del Virus de la Influenza A/enzimología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/enzimología , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza B/efectos de los fármacos , Virus de la Influenza B/enzimología , Virus de la Influenza B/genética , Gripe Humana/diagnóstico , Gripe Humana/virología , Japón , Límite de Detección , Técnicas de Diagnóstico Molecular/normas , Orthomyxoviridae/enzimología , Ribonucleasa H/genética , Sensibilidad y Especificidad
10.
Microbiol Immunol ; 64(4): 313-325, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31957054

RESUMEN

Intranasally administered influenza vaccines could be more effective than injected vaccines, because intranasal vaccination can induce virus-specific immunoglobulin A (IgA) antibodies in the upper respiratory tract, which is the initial site of infection. In this study, immune responses elicited by an intranasal inactivated vaccine of influenza A(H5N1) virus were evaluated in healthy individuals naive for influenza A(H5N1) virus. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy vinyl polymer, had a notable impact on the induction of nasal IgA antibody responses but not on serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific Th cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against influenza A(H5N1) viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses.


Asunto(s)
Inmunidad Mucosa , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Administración Intranasal , Adulto , Anticuerpos Neutralizantes/análisis , Anticuerpos Antivirales/análisis , Femenino , Humanos , Inmunoglobulina A Secretora/análisis , Inmunoglobulina G/sangre , Subtipo H5N1 del Virus de la Influenza A , Vacunas contra la Influenza/administración & dosificación , Masculino , Persona de Mediana Edad , Mucosa Nasal/inmunología , Vacunación , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Adulto Joven
11.
Influenza Other Respir Viruses ; 14(2): 204-209, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31651085

RESUMEN

BACKGROUND: Cell-based influenza vaccines can solve the problem of the frequent occurrence of egg adaptation-associated antigenic changes observed in egg-based vaccines. Seed viruses for cell-based vaccines can be prepared from clinical specimens by cell culture; however, clinical samples risk harboring respiratory viruses other than influenza virus. Therefore, it is necessary to investigate the patterns of co-infection in clinical samples and explore whether cell culture technology can selectively propagate influenza viruses from samples containing other respiratory viruses. METHODS: A total of 341 clinical specimens were collected from patients with influenza or influenza-like illness and analyzed by ResPlex II assay to detect 18 respiratory viruses. The patterns of co-infection were statistically analyzed with Fisher's exact test. The samples with double or triple infections were passaged in suspension MDCK cells (MDCK-S), adherent MDCK cells (MDCK-A), and LLC-MK2D cells. Cell-passaged samples were analyzed by ResPlex II assay again to investigate whether each cell line could amplify influenza viruses and eliminate other respiratory viruses. RESULTS: Double infections were detected in 8.5% and triple infections in 0.9% of the collected clinical specimens. We identified four pairs of viruses with significant correlation. For all samples with double and triple infection, MDCK-S and MDCK-A could selectively propagate influenza viruses, while eliminating all contaminating viruses. In contrast, LLC-MK2D showed lower isolation efficiency for influenza virus and higher isolation efficiency for coxsackievirus/echovirus than MDCK-S and MDCK-A. CONCLUSIONS: Both MDCK-S and MDCK-A are considered suitable for the preparation of influenza vaccine seed viruses without adventitious agents or egg-adaptation mutations.


Asunto(s)
Células de Riñón Canino Madin Darby/virología , Orthomyxoviridae/aislamiento & purificación , Cultivo de Virus/métodos , Animales , Línea Celular , Perros , Humanos , Orthomyxoviridae/crecimiento & desarrollo , Vacunas Virales
13.
Vaccine ; 37(43): 6526-6534, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31500967

RESUMEN

Suspension Madin-Darby canine kidney (MDCK) cells (MDCK-N), adherent MDCK cells (MDCK-C), and adherent rhesus monkey kidney LLC-MK2 cells (LLC-MK2D) were systematically evaluated for the preparation of influenza vaccine seed viruses for humans on the basis of primary virus isolation efficiency, growth ability, genetic stability of the hemagglutinin (HA) and neuraminidase (NA) genes, and antigenic properties in hemagglutination inhibition (HI) test of each virus isolate upon further passages. All the subtypes/lineages of influenza viruses (A(H1N1), A(H1N1)pdm09, A(H3N2), B-Victoria, and B-Yamagata) were successfully isolated from clinical specimens by using MDCK-N and MDCK-C, whereas LLC-MK2D did not support virus replication well. Serial passages of A(H1N1) viruses in MDCK-N and MDCK-C induced genetic mutations of HA that resulted in moderate antigenic changes in the HI test. All A(H1N1)pdm09 isolates from MDCK-C acquired amino acid substitutions at the site from K153 to N156 of the HA protein, which resulted in striking antigenic alteration. In contrast, only 30% of MDCK-N isolates showed amino acid changes at this site. The frequency of MDCK-N isolates with less than two-fold reduction in the HI titer was as high as 70%. A(H3N2) and B-Yamagata isolates showed high antigenic stability and no specific amino acid substitution during passages in MDCK-N and MDCK-C. B-Victoria isolates from MDCK-N and MDCK-C acquired genetic changes at HA glycosylation sites that greatly affected their antigenicity. When these cell isolates were applied to passages in hen eggs, A(H1N1), B-Victoria, and B-Yamagata viruses grew well in eggs, while none of the cell isolates of A(H3N2) viruses did. Thus, we demonstrate that MDCK-N might be useful for the preparation of influenza vaccine seed viruses.


Asunto(s)
Virus de la Influenza A/clasificación , Virus de la Influenza A/fisiología , Cultivo de Virus/métodos , Replicación Viral , Animales , Línea Celular , Perros , Hemaglutininas Virales/genética , Vacunas contra la Influenza , Riñón/citología , Riñón/virología , Macaca mulatta , Células de Riñón Canino Madin Darby , Mutación , Neuraminidasa/genética , ARN Viral/genética
14.
Emerg Infect Dis ; 25(11): 2108-2111, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31436527

RESUMEN

In 2019, influenza A(H3N2) viruses carrying an I38T substitution in the polymerase acidic gene, which confers reduced susceptibility to baloxavir, were detected in Japan in an infant without baloxavir exposure and a baloxavir-treated sibling. These viruses' whole-genome sequences were identical, indicating human-to-human transmission. Influenza virus isolates should be monitored for baloxavir susceptibility.


Asunto(s)
Antivirales/farmacología , Susceptibilidad a Enfermedades , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Gripe Humana/transmisión , Gripe Humana/virología , Oxazinas/farmacología , Piridinas/farmacología , Tiepinas/farmacología , Triazinas/farmacología , Adolescente , Adulto , Antivirales/uso terapéutico , Niño , Dibenzotiepinas , Humanos , Lactante , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Japón/epidemiología , Persona de Mediana Edad , Morfolinas , Mutación , Oxazinas/uso terapéutico , Piridinas/uso terapéutico , Piridonas , Tiepinas/uso terapéutico , Triazinas/uso terapéutico , Adulto Joven
15.
Vaccine ; 37(36): 5382-5389, 2019 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-31345642

RESUMEN

This study examined the protective efficacy of and immune response to a nasal influenza vaccine combined with a novel mucosal oligodeoxynucleotide (ODN) adjuvant, CpG ODN G9.1 (G9.1), in a model of infection limited to the upper respiratory tract (URT) and a model of infection in the lower respiratory tract (LRT). Mice were nasally primed with an A/California/7/2009 (Cal7) split vaccine (X179A) plus G9.1 and were then nasally given a booster with X179A alone. When mice were challenged with either a large (infection of the LRT) or small (infection limited to the URT) volume of live Cal7 influenza virus, mice nasally given G9.1 combined with X179A had a markedly higher rate of protection against infection limited to the URT. Moreover, this group of mice promptly recovered from an infection of the LRT. When mice were subcutaneously (s.c.) given X179A as a current form of vaccination, they had no protection from an infection limited to the URT but they did recover from an infection of the LRT. The patterns of protection were closely correlated with influenza virus-specific mucosal secretory IgA (SIgA) or serum IgG antibody (Ab) responses. Thus, SIgA Abs responses play an important role in protection from an infection limited to the URT while influenza virus-specific serum IgG Ab responses help to protect from an infection of the LRT. A finding of note is that lungs from mice nasally given G9.1 had low levels of type I IFN-associated protein- and transcription factor-specific mRNA expression. These results suggest that nasal G9.1 can be used as an effective and safe mucosal adjuvant for influenza vaccines since this nasal vaccine system elicits both mucosal SIgA and serum IgG Ab responses that provide complete protection without inducing potent inflammatory responses.


Asunto(s)
Gripe Humana/inmunología , Gripe Humana/prevención & control , Oligodesoxirribonucleótidos/inmunología , Adyuvantes Inmunológicos , Administración Intranasal , Animales , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/metabolismo , Femenino , Humanos , Inmunoglobulina A/inmunología , Inmunoglobulina A/metabolismo , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/uso terapéutico , Cinética , Ratones , Ratones Endogámicos BALB C , Orthomyxoviridae/inmunología , Orthomyxoviridae/patogenicidad , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas de Productos Inactivados/uso terapéutico
16.
Viruses ; 11(3)2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30836639

RESUMEN

Rhinoviruses (RVs) are classified into three species: RV-A, B, and C. Unlike RV-A and -B, RV-C cannot be propagated using standard cell culture systems. In order to isolate RV-Cs from clinical specimens and gain a better understanding of their biological properties and pathogenesis, we established air⁻liquid-interface (ALI) culture methods using HBEC3-KT and HSAEC1-KT immortalized human airway epithelial cells. HBEC3- and HSAEC1-ALI cultures morphologically resembled pseudostratified epithelia with cilia and goblet cells. Two fully sequenced clinical RV-C isolates, RV-C9 and -C53, were propagated in HBEC3-ALI cultures, and increases in viral RNA ranging from 1.71 log10 to 7.06 log10 copies were observed. However, this propagation did not occur in HSAEC1-ALI cultures. Using the HBEC3-ALI culture system, 11 clinical strains of RV-C were isolated from 23 clinical specimens, and of them, nine were passaged and re-propagated. The 11 clinical isolates were classified as RV-C2, -C6, -C9, -C12, -C18, -C23, -C40, and -C53 types according to their VP1 sequences. Our stable HBEC3-ALI culture system is the first cultivable cell model that supports the growth of multiple RV-C virus types from clinical specimens. Thus, the HBEC3-ALI culture system provides a cheap and easy-to-use alternative to existing cell models for isolating and investigating RV-Cs.


Asunto(s)
Diferenciación Celular , Enterovirus/crecimiento & desarrollo , Células Epiteliales/virología , Cultivo de Virus , Recuento de Células , Línea Celular Transformada , Enterovirus/genética , Enterovirus/fisiología , Humanos , Sistema Respiratorio/citología
17.
J Virol Methods ; 267: 53-58, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30831121

RESUMEN

Influenza virus and respiratory syncytial virus cause acute upper and lower respiratory tract infections, especially in children and the elderly. Early treatment for these infections is thought to be important, so simple and sensitive detection methods are needed for use at clinical sites. Therefore, in this study, real-time reverse transcription loop-mediated isothermal amplification assays with quenching primer for influenza virus and respiratory syncytial virus were developed. Evaluation of a total of 113 clinical specimens compared to real-time RT-PCR assays showed that the novel assays could distinguish between the types and subtypes of influenza virus and respiratory syncytial virus and had 100% diagnostic specificity. The diagnostic sensitivity of each assay exceeded 85.0% and the assays showed sufficient clinical accuracy. Furthermore, positive results could be obtained in around 15 min using the novel assays in cases with high concentrations of virus. The developed assays should be useful for identifying influenza virus and respiratory syncytial virus cases not only in experimental laboratories but also in hospital and quarantine laboratories.


Asunto(s)
Cartilla de ADN/genética , Orthomyxoviridae/aislamiento & purificación , Virus Sincitial Respiratorio Humano/aislamiento & purificación , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Humanos , Gripe Humana/diagnóstico , Gripe Humana/virología , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/virología , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología , Sensibilidad y Especificidad , Temperatura
18.
Euro Surveill ; 24(12)2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30914078

RESUMEN

In January 2019, two influenza A(H3N2) viruses carrying an I38T substitution in the polymerase acidic subunit (PA), which confers reduced susceptibility to baloxavir, were detected from epidemiologically unrelated hospitalised children in Japan. The viruses exhibited reduced susceptibility to baloxavir but were susceptible to neuraminidase inhibitors. Only one of the two children had been treated with baloxavir. An epidemiological analysis suggests possible transmission of the PA I38T mutant A(H3N2) virus among humans.


Asunto(s)
Antivirales/farmacología , Farmacorresistencia Viral/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Oxazinas/farmacología , Piridinas/farmacología , Tiepinas/farmacología , Triazinas/farmacología , Adolescente , Adulto , Antivirales/uso terapéutico , Niño , Dibenzotiepinas , Inhibidores Enzimáticos/farmacología , Humanos , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , Pacientes Internos , Japón , Persona de Mediana Edad , Morfolinas , Oxazinas/uso terapéutico , Reacción en Cadena de la Polimerasa , Piridinas/uso terapéutico , Piridonas , Tiepinas/uso terapéutico , Resultado del Tratamiento , Triazinas/uso terapéutico , Adulto Joven
19.
J Med Virol ; 91(7): 1232-1238, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30735248

RESUMEN

Human rhinoviruses (RVs) belong to the genus Enterovirus of the family Picornaviridae, and are classified into RV-A, -B, and -C species. Two assays were developed to detect RVs by a real-time fluorescent reverse transcription loop-mediated isothermal amplification method: one was designed based on the 5'-untranslated regions (UTRs) of RV-A and -B, and the other was designed based on the 5'-UTR of RV-C. The competence of both assays for the diagnosis of RV infection was tested using isolated viruses and compared with real-time reverse transcription polymerase chain reaction assays on clinical specimens. Neither assay demonstrated cross-reactivity with other tested enteroviruses, and they detected 19 out of 21 tested RV-As and seven out of eight tested RV-Cs. The specificity of the assays was 100% for the detection of RVs and their sensitivity for RV-A and RV-C was 86.3% and 77.3%, respectively, on clinical specimens by the combined use of both assays. Considering that both developed assays were highly specific and detected the majority of recently circulating RVs, they are helpful for the diagnosis of RV infection. Consequently, the results generated by these assays will enhance the surveillance of respiratory illness and the study of the roles of RVs associated with clinical features and disease severity.


Asunto(s)
Fluorescencia , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico/métodos , Infecciones por Picornaviridae/diagnóstico , Rhinovirus/genética , Temperatura , Regiones no Traducidas 5'/genética , Cartilla de ADN , Humanos , Infecciones por Picornaviridae/virología , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Sensibilidad y Especificidad
20.
Euro Surveill ; 24(3)2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30670142

RESUMEN

The novel cap-dependent endonuclease inhibitor baloxavir marboxil was approved for the treatment of influenza virus infection in Japan in February 2018. Two influenza A(H3N2) viruses carrying an I38T substitution in the polymerase acidic subunit (PA) were detected in baloxavir-treated children in December 2018. This mutation is known to confer reduced susceptibility to baloxavir, and the two mutant viruses exhibited 76- and 120-fold reduced susceptibility to baloxavir.


Asunto(s)
Antivirales/uso terapéutico , Endonucleasas/antagonistas & inhibidores , Subtipo H3N2 del Virus de la Influenza A/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Oxazinas/uso terapéutico , Piridinas/uso terapéutico , Tiepinas/uso terapéutico , Triazinas/uso terapéutico , Sustitución de Aminoácidos/genética , Antivirales/administración & dosificación , Dibenzotiepinas , Farmacorresistencia Viral/efectos de los fármacos , Farmacorresistencia Viral/genética , Endonucleasas/genética , Humanos , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/diagnóstico , Japón , Pruebas de Sensibilidad Microbiana , Morfolinas , Piridonas , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA