Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
STAR Protoc ; 5(2): 103057, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38762883

RESUMEN

Here, we present our protocol to culture enteric glial cells from the submucosal and myenteric plexus of neonatal and juvenile pig colons. We describe steps for colon isolation, microdissection, and enzymatic and mechanical dissociation. We include procedures for passaging and analyzing cell yield, freeze/thaw efficiency, and purity. This protocol allows for the generation of primary cultures of enteric glial cells from single-cell suspensions of microdissected layers of the colon wall and can be used to culture enteric glia from human colon specimens. For complete details on the use and execution of this protocol, please refer to Ziegler et al.1.

2.
Poult Sci ; 103(6): 103696, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38593549

RESUMEN

Zinc (Zn) could alleviate the adverse effect of high temperature (HT) on intestinal integrity and barrier function of broilers, but the underlying mechanisms remain unclear. We aimed to investigate the possible protective mechanisms of Zn on primary cultured broiler jejunal epithelial cells exposed to thermal stress (TS). In Exp.1, jejunal epithelial cells were exposed to 40℃ (normal temperature, NT) and 44℃ (HT) for 1, 2, 4, 6, or 8 h. Cells incubated for 8 h had the lowest transepithelial resistance (TEER) and the highest phenol red permeability under HT. In Exp.2, the cells were preincubated with different Zn sources (Zn sulfate as iZn and Zn proteinate with the moderate chelation strength as oZn) and Zn supplemental levels (50 and 100 µmol/L) under NT for 24 h, and then continuously incubated under HT for another 8 h. TS increased phenol red permeability, lactate dehydrogenase (LDH) activity and p-PKC/PKC level, and decreased TEER, cell proliferation, mRNA levels of claudin-1, occludin, zona occludens-1 (ZO-1), PI3K, AKT and mTOR, protein levels of claudin-1, ZO-1 and junctional adhesion molecule-A (JAM-A), and the levels of p-ERK/ERK, p-PI3K/PI3K and p-AKT/AKT. Under HT, oZn was more effective than iZn in increasing TEER, occludin, ZO-1, PI3K, and AKT mRNA levels, ZO-1 protein level, and p-AKT/AKT level; supplementation with 50 µmol Zn/L was more effective than 100 µmol Zn/L in increasing cell proliferation, JAM-A, PI3K, AKT, and PKC mRNA levels, JAM-A protein level, and the levels of p-ERK/ERK and p-PI3K/PI3K; furthermore, supplementation with 50 µmol Zn/L as oZn had the lowest LDH activity, and the highest ERK, JNK-1, and mTOR mRNA levels. Therefore, supplemental Zn, especially 50 µmol Zn/L as oZn, could alleviate the TS-induced integrity and barrier function damage of broiler jejunal epithelial cells possibly by promoting cell proliferation and tight junction protein expression via the MAPK and PI3K/AKT/mTOR signaling pathways.

3.
Am J Physiol Gastrointest Liver Physiol ; 326(3): G228-G246, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38147796

RESUMEN

Ischemic damage to the intestinal epithelial barrier, such as in necrotizing enterocolitis or small intestinal volvulus, is associated with higher mortality rates in younger patients. We have recently reported a powerful pig model to investigate these age-dependent outcomes in which mucosal barrier restitution is strikingly absent in neonates but can be rescued by direct application of homogenized mucosa from older, juvenile pigs by a yet-undefined mechanism. Within the mucosa, a postnatally developing network of enteric glial cells (EGCs) is gaining recognition as a key regulator of the mucosal barrier. Therefore, we hypothesized that the developing EGC network may play an important role in coordinating intestinal barrier repair in neonates. Neonatal and juvenile jejunal mucosa recovering from surgically induced intestinal ischemia was visualized by scanning electron microscopy and the transcriptomic phenotypes were assessed by bulk RNA sequencing. EGC network density and glial activity were examined by Gene Set Enrichment Analysis, three-dimensional (3-D) volume imaging, and Western blot and its function in regulating epithelial restitution was assessed ex vivo in Ussing chamber using the glia-specific inhibitor fluoroacetate (FA), and in vitro by coculture assay. Here we refine and elaborate our translational model, confirming a neonatal phenotype characterized by a complete lack of coordinated reparative signaling in the mucosal microenvironment. Furthermore, we report important evidence that the subepithelial EGC network changes significantly over the early postnatal period and demonstrate that the proximity of a specific functional population of EGC to wounded intestinal epithelium contributes to intestinal barrier restitution following ischemic injury.NEW & NOTEWORTHY This study refines a powerful translational pig model, defining an age-dependent relationship between enteric glia and the intestinal epithelium during intestinal ischemic injury and confirming an important role for enteric glial cell (EGC) activity in driving mucosal barrier restitution. This study suggests that targeting the enteric glial network could lead to novel interventions to improve recovery from intestinal injury in neonatal patients.


Asunto(s)
Intestino Delgado , Neuroglía , Humanos , Animales , Recién Nacido , Porcinos , Neuroglía/fisiología , Intestinos , Mucosa Intestinal , Yeyuno , Isquemia
4.
J Nutr ; 153(8): 2249-2262, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37348760

RESUMEN

BACKGROUND: Early intestinal development is important to infant vitality, and optimal formula composition can promote gut health. OBJECTIVES: The objectives were to evaluate the effects of arachidonate (ARA) and/or prebiotic oligosaccharide (PRE) supplementation in formula on the development of the microbial ecosystem and colonic health parameters. METHODS: Newborn piglets were fed 4 formulas containing ARA [0.5 compared with 2.5% of dietary fatty acids (FAs)] and PRE (0 compared with 8 g/L, containing a 1:1 mixture of galactooligosaccharides and polydextrose) in a 2 x 2 factorial design for 22 d. Fecal samples were collected weekly and analyzed for relative microbial abundance. Intestinal samples were collected on day 22 and analyzed for mucosal FAs, pH, and short-chain FAs (SCFAs). RESULTS: PRE supplementation significantly increased genera within Bacteroidetes and Firmicutes, including Anaerostipes, Mitsuokella, Prevotella, Clostridium IV, and Bulleidia, and resulted in progressive separation from controls as determined by Principal Coordinates Analysis. Concentrations of SCFA increased from 70.98 to 87.37 mM, with an accompanying reduction in colonic pH. ARA supplementation increased the ARA content of the colonic mucosa from 2.35-5.34% of total FAs. PRE supplementation also altered mucosal FA composition, resulting in increased linoleic acid (11.52-16.33% of total FAs) and ARA (2.35-5.16% of total FAs). CONCLUSIONS: Prebiotic supplementation during the first 22 d of life altered the gut microbiota of piglets and increased the abundance of specific bacterial genera. These changes correlated with increased SCFA, which may benefit intestinal development. Although dietary ARA did not alter the microbiota, it increased the ARA content of the colonic mucosa, which may support intestinal development and epithelial repair. Prebiotic supplementation also increased unsaturation of FAs in the colonic mucosa. Although the mechanism requires further investigation, it may be related to altered microbial ecology or biohydrogenation of FA.


Asunto(s)
Microbiota , Prebióticos , Animales , Porcinos , Oligosacáridos/farmacología , Oligosacáridos/análisis , Heces/microbiología , Mucosa Intestinal , Lípidos
5.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37047049

RESUMEN

To investigate the role of peroxisome proliferator-activated receptor alpha (PPARα) in carnitine status and intestinal fatty acid oxidation in neonates, a total of 72 suckled newborn piglets were assigned into 8 dietary treatments following a 2 (±0.35% clofibrate) × 4 (diets with: succinate+glycerol (Succ), tri-valerate (TC5), tri-hexanoate (TC6), or tri-2-methylpentanoate (TMPA)) factorial design. All pigs received experimental milk diets with isocaloric energy for 5 days. Carnitine statuses were evaluated, and fatty acid oxidation was measured in vitro using [1-14C]-palmitic acid (1 mM) as a substrate in absence or presence of L659699 (1.6 µM), iodoacetamide (50 µM), and carnitine (1 mM). Clofibrate increased concentrations of free (41%) and/or acyl-carnitine (44% and 15%) in liver and plasma but had no effects in the intestine. The effects on carnitine status were associated with the expression of genes involved in carnitine biosynthesis, absorption, and transportation. TC5 and TMPA stimulated the increased fatty acid oxidation rate induced by clofibrate, while TC6 had no effect on the increased fatty acid oxidation induced by clofibrate (p > 0.05). These results suggest that dietary clofibrate improved carnitine status and increased fatty acid oxidation. Propionyl-CoA, generated from TC5 and TMPA, could stimulate the increased fatty acid oxidation rate induced by clofibrate as anaplerotic carbon sources.


Asunto(s)
Carnitina , Clofibrato , Animales , Porcinos , Clofibrato/farmacología , Animales Recién Nacidos , Carnitina/farmacología , Carnitina/metabolismo , Hígado/metabolismo , Ácido Palmítico/farmacología , Triglicéridos/metabolismo , Intestinos , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Oxidación-Reducción
6.
J Nutr Biochem ; 116: 109312, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36871838

RESUMEN

Maternal undernutrition is highly prevalent in developing countries, leading to severe fetus/infant mortality, intrauterine growth restriction, stunting, and severe wasting. However, the potential impairments of maternal undernutrition to metabolic pathways in offspring are not defined completely. In this study, 2 groups of pregnant domestic pigs received nutritionally balanced gestation diets with or without 50% feed intake restriction from 0 to 35 gestation days and 70% from 35 to 114 gestation days. Full-term fetuses were collected via C-section on day 113/114 of gestation. MicroRNA and mRNA deep sequencing were analyzed using the Illumina GAIIx system on fetal liver samples. The mRNA-miRNA correlation and associated signaling pathways were analyzed via CLC Genomics Workbench and Ingenuity Pathway Analysis Software. A total of 1189 and 34 differentially expressed mRNA and miRNAs were identified between full-nutrition (F) and restricted-nutrition (R) groups. The correlation analyses showed that metabolic and signaling pathways such as oxidative phosphorylation, death receptor signaling, neuroinflammation signaling pathway, and estrogen receptor signaling pathways were significantly modified, and the gene modifications in these pathways were associated with the miRNA changes induced by the maternal undernutrition. For example, the upregulated (P<.05) oxidative phosphorylation pathway in R group was validated using RT-qPCR, and the correlational analysis indicated that miR-221, 103, 107, 184, and 4497 correlate with their target genes NDUFA1, NDUFA11, NDUFB10 and NDUFS7 in this pathway. These results provide the framework for further understanding maternal malnutrition's negative impacts on hepatic metabolic pathways via miRNA-mRNA interactions in full-term fetal pigs.


Asunto(s)
Feto , Desnutrición , Embarazo , Femenino , Animales , Porcinos , ARN Mensajero/metabolismo , Feto/metabolismo , Hígado/metabolismo , Transducción de Señal , Desnutrición/metabolismo
7.
Anim Nutr ; 12: 334-344, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36733783

RESUMEN

To investigate whether increasing tricarboxylic acid (TCA) cycle activity and ketogenic capacity would augment fatty acid (FA) oxidation induced by the peroxisome proliferator-activated receptor-alpha (PPARα) agonist clofibrate, suckling newborn piglets (n = 54) were assigned to 8 groups following a 2 ( ± clofibrate) × 4 (glycerol succinate [SUC], triglycerides of 2-methylpentanoic acid [T2M], valeric acid [TC5] and hexanoic acid [TC6]) factorial design. Each group was fed an isocaloric milk formula containing either 0% or 0.35% clofibrate (wt/wt, dry matter basis) with 5% SUC, T2M, TC5 or TC6 for 5 d. Another 6 pigs served as newborn controls. Fatty acid oxidation was examined in fresh homogenates of liver collected on d 6 using [1-14C] palmitic acid (1 mM) as a substrate (0.265 µCi/µmol). Measurements were performed in the absence or presence of L-carnitine (1 mM) or inhibitors of 3-hydroxy-3-methylglutaryl-CoA synthase (L659699, 1.6 µM) or acetoacetate-CoA deacylase (iodoacetamide, 50 µM). Without clofibrate stimulation, 14C accumulation in CO2 was higher from piglets fed diets containing T2M and TC5 than SUC, but similar to those fed TC6. Under clofibrate stimulation, accumulation also was higher in homogenates from piglets fed TC5 than all other dietary treatments. Interactions between clofibrate and carnitine or the inhibitors were observed (P = 0.0004) for acid soluble products (ASP). In vitro addition of carnitine increased 14C-ASP (P < 0.0001) above all other treatments, regardless of clofibrate treatment. The percentage of 14C in CO2 was higher (P = 0.0023) in TC5 than in the control group. From these results we suggest that dietary supplementation of anaplerotic and ketogenic FA could impact FA oxidation and modify the metabolism of acetyl-CoA (product of ß-oxidation) via alteration of TCA cycle activity, but the modification has no significant impact on the hepatic FA oxidative capacity induced by PPARα. In addition, the availability of carnitine is a critical element to maintain FA oxidation during the neonatal period.

8.
Front Allergy ; 3: 1029184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452260

RESUMEN

Eosinophilic esophagitis (EoE) is a chronic allergy-mediated condition with an increasing incidence in both children and adults. Despite EoE's strong impact on human health and welfare, there is a large unmet need for treatments with only one recently FDA-approved medication for EoE. The goal of this study was to establish swine as a relevant large animal model for translational biomedical research in EoE with the potential to facilitate development of therapeutics. We recently showed that after intraperitoneal sensitization and oral challenge with the food allergen hen egg white protein (HEWP), swine develop esophageal eosinophilia-a hallmark of human EoE. Herein, we used a similar sensitization and challenge treatment and evaluated immunological and pathological markers associated with human EoE. Our data demonstrate that the incorporated sensitization and challenge treatment induces (i) a systemic T-helper 2 and IgE response, (ii) a local expression of eotaxin-1 and other allergy-related immune markers, (iii) esophageal eosinophilia (>15 eosinophils/0.24 mm2), and (iv) esophageal endoscopic findings including linear furrows and white exudates. Thereby, we demonstrate that our sensitization and oral challenge protocol not only induces the underlying immune markers but also the micro- and macro-pathological hallmarks of human EoE. This swine model for EoE represents a novel relevant large animal model that can drive translational biomedical research to develop urgently needed treatment strategies for EoE.

9.
Animals (Basel) ; 12(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36139268

RESUMEN

To combat the stress of weaning, we utilized novel gruel creep feeders to supplement suckling pigs with divergent soluble (n = 6 litters) versus insoluble (n = 6) diets compared with un-supplemented controls (n = 6). Post-weaning, pigs were fed a common phase 1 diet. Average daily weight gains of pigs fed soluble and insoluble creep diets were 53% and 17% greater than control pigs, respectively (p < 0.01). Creep intake was higher (82%) for pigs fed the soluble diet, and the accompanying weight increase was sustained post-weaning (p < 0.02). Villus measures were prematurely altered in soluble-creep-fed pigs (p < 0.01), with decreases in villi length, crypt depth, and villus area pre-weaning. No effects of treatment were detected for VFA concentrations and pH in the cecum. There was an interaction between treatment and age for several pro- and anti-inflammatory cytokines (p < 0.01), where soluble-creep-fed pigs had increased cytokine levels with age, whereas cytokine levels in the insoluble and control groups decreased over time. We conclude that a soluble creep diet fed in a gruel state during the pre-weaning period has a positive impact on weaning weight that is sustained post-weaning, and is accompanied by alterations in the intestinal health of young pigs.

10.
J Anim Sci Biotechnol ; 13(1): 58, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35550013

RESUMEN

Selenium is an essential trace mineral important for the maintenance of homeostasis in animals and humans. It evinces a strong antioxidant, anti-inflammatory and potential antimicrobial capacity. Selenium biological function is primarily achieved by its presence in selenoproteins as a form of selenocysteine. Selenium deficiency may result in an array of health disorders, affecting many organs and systems; to prevent this, dietary supplementation, mainly in the forms of organic (i.e., selenomethionine and selenocysteine) inorganic (i.e., selenate and selenite) sources is used. In pigs as well as other food animals, dietary selenium supplementation has been used for improving growth performance, immune function, and meat quality. A substantial body of knowledge demonstrates that dietary selenium supplementation is positively associated with overall animal health especially due to its immunomodulatory activity and protection from oxidative damage. Selenium also possesses potential antiviral activity and this is achieved by protecting immune cells against oxidative damage and decreasing viral replication. In this review we endeavor to combine established and novel knowledge on the beneficial effects of dietary selenium supplementation, its antioxidant and immunomodulatory actions, and the putative antimicrobial effect thereof. Furthermore, our review demonstrates the gaps in knowledge pertaining to the use of selenium as an antiviral, underscoring the need for further in vivo and in vitro studies, particularly in pigs.

12.
Nutr Res Rev ; 35(1): 150-158, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34100341

RESUMEN

Intestinal stem cells, which are capable of both self-renewal and differentiation to mature cell types, are responsible for maintaining intestinal epithelial homeostasis. Recent evidence indicates that these processes are mediated, in part, through nutritional status in response to diet. Diverse dietary patterns including caloric restriction, fasting, high-fat diets, ketogenic diets and high-carbohydrate diets as well as other nutrients control intestinal stem cell self-renewal and differentiation through nutrient-sensing pathways such as mammalian target of rapamycin and AMP-activated kinase. Herein, we summarise the current understanding of how intestinal stem cells contribute to intestinal epithelial homeostasis and diseases. We also discuss the effects of diet and nutrient-sensing pathways on intestinal stem cell self-renewal and differentiation, as well as their potential application in the prevention and treatment of intestinal diseases.


Asunto(s)
Enfermedades Intestinales , Células Madre , Dieta Alta en Grasa , Homeostasis , Humanos , Enfermedades Intestinales/terapia , Nutrientes , Células Madre/metabolismo
13.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-34201613

RESUMEN

Disruptions in the intestinal epithelial barrier can result in devastating consequences and a multitude of disease syndromes, particularly among preterm neonates. The association between barrier dysfunction and intestinal dysbiosis suggests that the intestinal barrier function is interactive with specific gut commensals and pathogenic microbes. In vitro and in vivo studies demonstrate that probiotic supplementation promotes significant upregulation and relocalization of interepithelial tight junction proteins, which form the microscopic scaffolds of the intestinal barrier. Probiotics facilitate some of these effects through the ligand-mediated stimulation of several toll-like receptors that are expressed by the intestinal epithelium. In particular, bacterial-mediated stimulation of toll-like receptor-2 modulates the expression and localization of specific protein constituents of intestinal tight junctions. Given that ingested prebiotics are robust modulators of the intestinal microbiota, prebiotic supplementation has been similarly investigated as a potential, indirect mechanism of barrier preservation. Emerging evidence suggests that prebiotics may additionally exert a direct effect on intestinal barrier function through mechanisms independent of the gut microbiota. In this review, we summarize current views on the effects of pro- and prebiotics on the intestinal epithelial barrier as well as on non-epithelial cell barrier constituents, such as the enteric glial cell network. Through continued investigation of these bioactive compounds, we can maximize their therapeutic potential for preventing and treating gastrointestinal diseases associated with impaired intestinal barrier function and dysbiosis.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Mucosa Intestinal/fisiología , Prebióticos , Probióticos/farmacología , Uniones Estrechas/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Humanos , Lactante , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Proteínas de Uniones Estrechas/metabolismo , Receptores Toll-Like/metabolismo
14.
Am J Clin Nutr ; 114(4): 1280-1285, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34258613

RESUMEN

Two questions regarding the scientific literature have become grist for public discussion: 1) what place should P values have in reporting the results of studies? 2) How should the perceived difficulty in replicating the results reported in published studies be addressed? We consider these questions to be 2 sides of the same coin; failing to address them can lead to an incomplete or incorrect message being sent to the reader. If P values (which are derived from the estimate of the effect size and a measure of the precision of the estimate of the effect) are used improperly, for example reporting only significant findings, or reporting P values without account for multiple comparisons, or failing to indicate the number of tests performed, the scientific record can be biased. Moreover, if there is a lack of transparency in the conduct of a study and reporting of study results, it will not be possible to repeat a study in a manner that allows inferences from the original study to be reproduced or to design and conduct a different experiment whose aim is to confirm the original study's findings. The goal of this article is to discuss how P values can be used in a manner that is consistent with the scientific method, and to increase transparency and reproducibility in the conduct and analysis of nutrition research.


Asunto(s)
Revelación , Ciencias de la Nutrición , Publicaciones Periódicas como Asunto , Edición/normas , Reproducibilidad de los Resultados , Proyectos de Investigación , Políticas Editoriales , Humanos , Proyectos de Investigación/estadística & datos numéricos , Estados Unidos
15.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34001614

RESUMEN

The concept that gut microbiome-expressed functions regulate ponderal growth has important implications for infant and child health, as well as animal health. Using an intergenerational pig model of diet restriction (DR) that produces reduced weight gain, we developed a feature-selection algorithm to identify representative characteristics distinguishing DR fecal microbiomes from those of full-fed (FF) pigs as both groups consumed a common sequence of diets during their growth cycle. Gnotobiotic mice were then colonized with DR and FF microbiomes and subjected to controlled feeding with a pig diet. DR microbiomes have reduced representation of genes that degrade dominant components of late growth-phase diets, exhibit reduced production of butyrate, a key host-accessible energy source, and are causally linked to reduced hepatic fatty acid metabolism (ß-oxidation) and the selection of alternative energy substrates. The approach described could aid in the development of guidelines for microbiome stewardship in diverse species, including farm animals, in order to support their healthy growth.


Asunto(s)
Butiratos/metabolismo , Microbioma Gastrointestinal/fisiología , Metabolismo de los Lípidos/fisiología , Desnutrición/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , alfa-Glucosidasas/metabolismo , Algoritmos , Animales , Peso Corporal , Dieta/métodos , Dietoterapia/métodos , Modelos Animales de Enfermedad , Heces/microbiología , Vida Libre de Gérmenes , Hígado/metabolismo , Masculino , Desnutrición/fisiopatología , Ratones , Ratones Endogámicos C57BL , Almidón/metabolismo , Sacarosa/metabolismo , Porcinos , Ácido Taurocólico/metabolismo
16.
Trends Cell Biol ; 31(5): 325-327, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33648839

RESUMEN

The balance between self-renewal and differentiation of intestinal stem cells is essential for intestinal epithelial homeostasis, which can be regulated by dietary cues. Recent evidences indicate that metabolic pathways sense changes in nutritional status to control stem cell fate, which may provide new clues for the prevention of intestinal diseases.


Asunto(s)
Homeostasis/fisiología , Mucosa Intestinal/metabolismo , Redes y Vías Metabólicas/fisiología , Células Madre/citología , Animales , Diferenciación Celular , Proliferación Celular , Humanos , Transducción de Señal , Células Madre/metabolismo
17.
J Nutr ; 150(9): 2239-2241, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32652033

RESUMEN

A gluconeogenic precursor is a biochemical compound acted on by a gluconeogenic pathway enabling the net synthesis of glucose. Recognized gluconeogenic precursors in fasting placental mammals include glycerol, lactate/pyruvate, certain amino acids, and odd-chain length fatty acids. Each of these precursors is capable of contributing net amounts of carbon to glucose synthesis via the tricarboxylic acid cycle (TCA cycle) because they are anaplerotic, that is, they are able to increase the pools of TCA cycle intermediates by the contribution of more carbon than is lost via carbon dioxide. The net synthesis of glucose from even-chain length fatty acids (ECFAs) in fasting placental mammals, via the TCA cycle alone, is not possible because equal amounts of carbon are lost via carbon dioxide as is contributed from fatty acid oxidation via acetyl-CoA. Therefore, ECFAs do not meet the criteria to be recognized as a gluconeogenic precursor via the TCA cycle alone. ECFAs are gluconeogenic precursors in organisms with a functioning glyoxylate cycle, which enables the net contribution of carbon to the intermediates of the TCA cycle from ECFAs and the net synthesis of glucose. The net conversion of ECFAs to glucose in fasting placental mammals via C3 metabolism of acetone may be a competent though inefficient metabolic path by which ECFA could be considered a gluconeogenic precursor. Defining a substrate as a gluconeogenic precursor requires careful articulation of the definition, organism, and physiologic conditions under consideration.


Asunto(s)
Ácidos Grasos/metabolismo , Gluconeogénesis/fisiología , Glucosa/biosíntesis , Acetilcoenzima A/metabolismo , Carbono/metabolismo , Ciclo del Ácido Cítrico , Glioxilatos/metabolismo , Humanos , Oxidación-Reducción
18.
Am J Physiol Regul Integr Comp Physiol ; 319(1): R43-R49, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32432915

RESUMEN

γ-Butyrobetaine hydroxylase (γ-BBH) is the last limiting enzyme of the l-carnitine biosynthesis pathway and plays an important role in catalyzing the hydroxylation of γ-butyrobetaine (γ-BB) to l-carnitine. To study the developmental effect of substrate concentration on the enzyme's specific activity, kinetics of γ-BBH were measured in liver and kidney from newborn and 1-, 7-, 21-, 35-, 56-, and 210-day-old domestic pigs. Fresh tissue homogenates were assayed under nine concentrations of γ-BB from 0 to 1.5 mM. Substrate inhibition associated with age was observed at ≥0.6 mM of γ-BB. Hepatic activity was low at birth but increased after 1 day. By 21 days, the activity rose by 6.6-fold (P < 0.05) and remained constant after 56 days. Renal activity was higher than in liver at birth but remained constant through 35 days. By 56 days, the velocity increased by 44% over the activity at birth (P < 0.05). The apparent Km for γ-BB at birth on average was 2.8-fold higher than at 1 day. The Km value was 60% higher in kidney than liver during development but showed no difference in adult pigs. The total organ enzyme activity increased by 130-fold for liver and 18-fold for kidney as organ weight increased from birth to 56 days. In conclusion, age and substrate affect γ-BBH specific activity and Km for γ-BB in liver and kidney. Whereas the predominant organ for carnitine synthesis is likely the kidney at birth, the liver appears to predominate after the pig exceeds 7 days of age.


Asunto(s)
Carnitina/biosíntesis , gamma-Butirobetaína Dioxigenasa/metabolismo , Envejecimiento/metabolismo , Animales , Animales Recién Nacidos , Peso Corporal , Inhibidores Enzimáticos/farmacología , Riñón/enzimología , Riñón/crecimiento & desarrollo , Riñón/metabolismo , Cinética , Hígado/enzimología , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Tamaño de los Órganos , Sus scrofa , Porcinos , gamma-Butirobetaína Dioxigenasa/antagonistas & inhibidores
19.
FASEB J ; 34(2): 2483-2496, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31909535

RESUMEN

Deoxynivalenol (DON) is one of the most common mycotoxins that contaminates food or feed and cause intestinal damage. Long-chain n-3 polyunsaturated fatty acids (PUFA) such as EPA and DHA exert beneficial effects on intestinal integrity in animal models and clinical trials. Necroptosis signaling pathway plays a critical role in intestinal cell injury. This study tested the hypothesis that EPA and DHA could alleviate DON-induced injury to intestinal porcine epithelial cells through modulation of the necroptosis signaling pathway. Intestinal porcine epithelial cell 1 (IPEC-1) cells were cultured with or without EPA or DHA (6.25-25 µg/mL) in the presence or absence of 0.5 µg/mL DON for indicated time points. Cell viability, cell number, lactate dehydrogenase (LDH) activity, cell necrosis, transepithelial electrical resistance (TEER), fluorescein isothiocyanate-labeled dextran 4kDa (FD4) flux, tight junction protein distribution, and protein abundance of necroptosis related signals were determined. EPA and DHA promoted cell growth indicated by higher cell viability and cell number, and inhibited cell injury indicated by lower LDH activity in the media. EPA and DHA also improved intestinal barrier function, indicated by higher TEER and lower permeability of FD4 flux as well as increased proportions of tight junction proteins located in the plasma membrane. Moreover, EPA and DHA decreased cell necrosis demonstrated by live cell imaging and transmission electron microscopy. Finally, EPA and DHA downregulated protein expressions of necroptosis related signals including tumor necrosis factor receptor (TNFR1), receptor interacting protein kinase 1 (RIP1), RIP3, phosphorylated mixed lineage kinase-like protein (MLKL), phosphoglycerate mutase family 5 (PGAM5), dynamin-related protein 1 (Drp1), and high mobility group box-1 protein (HMGB1). EPA and DHA also inhibited protein expression of caspase-3 and caspase-8. These results suggest that EPA and DHA prevent DON-induced intestinal cell injury and enhance barrier function, which is associated with inhibition of the necroptosis signaling pathway.


Asunto(s)
Ácidos Docosahexaenoicos/farmacología , Ácido Eicosapentaenoico/farmacología , Células Epiteliales , Mucosa Intestinal , Necroptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Células Epiteliales/metabolismo , Células Epiteliales/patología , Mucosa Intestinal/lesiones , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Porcinos
20.
Int J Mol Sci ; 21(3)2020 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31979102

RESUMEN

Maintaining an active fatty acid metabolism is important for renal growth, development, and health. We evaluated the effects of anaplerotic and ketogenic energy sources on fatty acid oxidation during stimulation with clofibrate, a pharmacologic peroxisome proliferator-activated receptor α (PPARα) agonist. Suckling newborn pigs (n = 72) were assigned into 8 dietary treatments following a 2 × 4 factorial design: ± clofibrate (0.35%) and diets containing 5% of either (1) glycerol-succinate (GlySuc), (2) tri-valerate (TriC5), (3) tri-hexanoate (TriC6), or (4) tri-2-methylpentanoate (Tri2MPA). Pigs were housed individually and fed the iso-caloric milk replacer diets for 5 d. Renal fatty acid oxidation was measured in vitro in fresh tissue homogenates using [1-14C]-labeled palmitic acid. The oxidation was 30% greater in pig received clofibrate and 25% greater (p < 0.05) in pigs fed the TriC6 diet compared to those fed diets with GlySuc, TriC5, and Tri2MPA. Addition of carnitine also stimulated the oxidation by twofold (p < 0.05). The effects of TriC6 and carnitine on palmitic acid oxidation were not altered by clofibrate stimulation. However, renal fatty acid composition was altered by clofibrate and Tri2MPA. In conclusion, modification of anaplerosis or ketogenesis via dietary substrates had no influence on in vitro renal palmitic acid oxidation induced by PPARα activation.


Asunto(s)
Ácidos Grasos/metabolismo , Cuerpos Cetónicos/metabolismo , Riñón/metabolismo , Animales , Animales Recién Nacidos , Carnitina/farmacología , Clofibrato/farmacología , Dieta , Riñón/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/fisiología , Leche/metabolismo , Oxidación-Reducción/efectos de los fármacos , PPAR alfa/metabolismo , Ácido Palmítico/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA