Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Physiol Rep ; 9(24): e15092, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34921520

RESUMEN

Sodium-dependent glucose cotransporters (SGLTs) have attracted considerable attention as new targets for type 2 diabetes mellitus. In the kidney, SGLT2 is the major glucose uptake transporter in the proximal tubules, and inhibition of SGLT2 in the proximal tubules shows renoprotective effects. On the other hand, SGLT1 plays a role in glucose absorption from the gastrointestinal tract, and the relationship between SGLT1 inhibition in the gut and renal function remains unclear. Here, we examined the effect of SGL5213, a novel and potent intestinal SGLT1 inhibitor, in a renal failure (RF) model. SGL5213 improved renal function and reduced gut-derived uremic toxins (phenyl sulfate and trimethylamine-N-oxide) in an adenine-induced RF model. Histological analysis revealed that SGL5213 ameliorated renal fibrosis and inflammation. SGL5213 also reduced gut inflammation and fibrosis in the ileum, which is a primary target of SGL5213. Examination of the gut microbiota community revealed that the Firmicutes/Bacteroidetes ratio, which suggests gut dysbiosis, was increased in RF and SGL5213 rebalanced the ratio by increasing Bacteroidetes and reducing Firmicutes. At the genus level, Allobaculum (a major component of Erysipelotrichaceae) was significantly increased in the RF group, and this increase was canceled by SGL5213. We also measured the effect of SGL5213 on bacterial phenol-producing enzymes that catalyze tyrosine into phenol, following the reduction of phenyl sulfate, which is a novel marker and a therapeutic target for diabetic kidney disease DKD. We found that the enzyme inhibition was less potent, suggesting that the change in the microbial community and the reduction of uremic toxins may be related to the renoprotective effect of SGL5213. Because SGL5213 is a low-absorbable SGLT1 inhibitor, these data suggest that the gastrointestinal inhibition of SGLT1 is also a target for chronic kidney diseases.


Asunto(s)
Adenina/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Insuficiencia Renal/inducido químicamente , Insuficiencia Renal/tratamiento farmacológico , Transportador 1 de Sodio-Glucosa/antagonistas & inhibidores , Sorbitol/análogos & derivados , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Microbioma Gastrointestinal/fisiología , Ratones , Ratones Endogámicos C57BL , Insuficiencia Renal/metabolismo , Sorbitol/farmacología , Sorbitol/uso terapéutico
2.
PLoS One ; 15(12): e0231064, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33264289

RESUMEN

Sporadic inclusion body myositis (sIBM) is the most common idiopathic inflammatory myopathy, and several reports have suggested that mitochondrial abnormalities are involved in its etiology. We recruited 9 sIBM patients and found significant histological changes and an elevation of growth differential factor 15 (GDF15), a marker of mitochondrial disease, strongly suggesting the involvement of mitochondrial dysfunction. Bioenergetic analysis of sIBM patient myoblasts revealed impaired mitochondrial function. Decreased ATP production, reduced mitochondrial size and reduced mitochondrial dynamics were also observed in sIBM myoblasts. Cell vulnerability to oxidative stress also suggested the existence of mitochondrial dysfunction. Mitochonic acid-5 (MA-5) increased the cellular ATP level, reduced mitochondrial ROS, and provided protection against sIBM myoblast death. MA-5 also improved the survival of sIBM skin fibroblasts as well as mitochondrial morphology and dynamics in these cells. The reduction in the gene expression levels of Opa1 and Drp1 was also reversed by MA-5, suggesting the modification of the fusion/fission process. These data suggest that MA-5 may provide an alternative therapeutic strategy for treating not only mitochondrial diseases but also sIBM.


Asunto(s)
Ácidos Indolacéticos/uso terapéutico , Mitocondrias Musculares/metabolismo , Miositis por Cuerpos de Inclusión/tratamiento farmacológico , Fenilbutiratos/uso terapéutico , Adenosina Trifosfato/biosíntesis , Anciano , Anciano de 80 o más Años , Butionina Sulfoximina/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , ADN Mitocondrial/genética , Evaluación Preclínica de Medicamentos , Dinaminas/biosíntesis , Dinaminas/genética , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Fibroblastos/efectos de los fármacos , GTP Fosfohidrolasas/biosíntesis , GTP Fosfohidrolasas/genética , Factor 15 de Diferenciación de Crecimiento/biosíntesis , Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/genética , Humanos , Ácidos Indolacéticos/farmacología , Masculino , Persona de Mediana Edad , Mitocondrias Musculares/patología , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Mioblastos/ultraestructura , Miositis por Cuerpos de Inclusión/metabolismo , Miositis por Cuerpos de Inclusión/patología , Consumo de Oxígeno , Fenilbutiratos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Estudios Retrospectivos
3.
Nat Commun ; 10(1): 1835, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-31015435

RESUMEN

Diabetic kidney disease is a major cause of renal failure that urgently necessitates a breakthrough in disease management. Here we show using untargeted metabolomics that levels of phenyl sulfate, a gut microbiota-derived metabolite, increase with the progression of diabetes in rats overexpressing human uremic toxin transporter SLCO4C1 in the kidney, and are decreased in rats with limited proteinuria. In experimental models of diabetes, phenyl sulfate administration induces albuminuria and podocyte damage. In a diabetic patient cohort, phenyl sulfate levels significantly correlate with basal and predicted 2-year progression of albuminuria in patients with microalbuminuria. Inhibition of tyrosine phenol-lyase, a bacterial enzyme responsible for the synthesis of phenol from dietary tyrosine before it is metabolized into phenyl sulfate in the liver, reduces albuminuria in diabetic mice. Together, our results suggest that phenyl sulfate contributes to albuminuria and could be used as a disease marker and future therapeutic target in diabetic kidney disease.


Asunto(s)
Albuminuria/etiología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/sangre , Microbioma Gastrointestinal/fisiología , Ésteres del Ácido Sulfúrico/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Albuminuria/sangre , Albuminuria/tratamiento farmacológico , Albuminuria/patología , Animales , Animales Modificados Genéticamente , Estudios de Cohortes , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/orina , Diabetes Mellitus Tipo 1/sangre , Diabetes Mellitus Tipo 2/sangre , Nefropatías Diabéticas/etiología , Nefropatías Diabéticas/patología , Perros , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Femenino , Humanos , Células de Riñón Canino Madin Darby , Masculino , Metabolómica/métodos , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Transportadores de Anión Orgánico/genética , Podocitos/metabolismo , Podocitos/patología , Ratas , Estreptozocina/toxicidad , Ésteres del Ácido Sulfúrico/sangre , Tirosina Fenol-Liasa/antagonistas & inhibidores , Tirosina Fenol-Liasa/metabolismo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA