Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 273(52): 34813-9, 1998 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-9857007

RESUMEN

The ryanodine receptor/calcium release channel (RyR1) of sarcoplasmic reticulum from rabbit skeletal muscle terminal cisternae (TC) contains four tightly associated FK506-binding proteins (FKBP12). Dissociation and reconstitution studies have shown that RyR1 can be modulated by FKBP12, which helps to maintain the channel in the quiescent state. In this study, we found that the association of FKBP with RyR1 of skeletal muscle is common to each of the five classes of vertebrates. TC from skeletal muscle representing animals from different vertebrates, i.e. mammals (rabbit), birds (chicken), reptiles (turtle), fish (salmon and rainbow trout), and amphibians (frog), were isolated. For each, we find the following: 1) FKBP12 is localized to the TC (there are four FKBP binding sites/ryanodine receptor); 2) soluble FKBP exchanges with the bound form on RyR1 of TC; 3) release of FKBP from terminal cisternae by drug (FK590) treatment leads to a significant reduction in the net calcium loading rate, consistent with channel activation (the calcium loading rate is restored to the control value by reconstitution with FKBP12); and 4) RyR1 of skeletal muscle TC can bind to and exchange with either FKBP12 or FKBP12.6 (FKBP12.6 is the novel FKBP isoform found selectively associated with RyR2 of dog cardiac sarcoplasmic reticulum). We conclude that FKBP is an integral part of the RyR1 of skeletal muscle in each of the classes of vertebrate animals. The studies are consistent with a role for FKBP in skeletal muscle excitation-contraction coupling.


Asunto(s)
Inmunofilinas/metabolismo , Proteínas Musculares/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Vertebrados/metabolismo , Animales , Sitios de Unión , Calcio/metabolismo , Perros , Inmunofilinas/aislamiento & purificación , Proteínas Musculares/aislamiento & purificación , Unión Proteica , Conejos , Canal Liberador de Calcio Receptor de Rianodina/aislamiento & purificación , Retículo Sarcoplasmático/química , Proteínas de Unión a Tacrolimus
2.
J Biol Chem ; 262(33): 15851-6, 1987 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-2890636

RESUMEN

Doxorubicin (adriamycin) is a highly effective cancer chemotherapeutic drug but its clinical utility is limited by its cardiotoxicity. Doxorubicinol, the major metabolite of doxorubicin, is up to 10 times more potent than doxorubicin at inhibiting isometric contraction of the papillary muscle isolated from the right ventricle of rabbit heart. Doxorubicinol also increases resting tension of isolated cardiac muscle indicative of incomplete relaxation between contractions, a characteristic of doxorubicinol but not of doxorubicin. This study assesses the effect(s) of doxorubicinol on a variety of ion pumps which may explain, in part, the action of the metabolite in the intact muscle. We find the doxorubicinol is a potent inhibitor (IC50 less than 5 micrograms/ml) of calcium-stimulated ATPase activity of sarcoplasmic reticulum from canine heart and rabbit skeletal muscle. At comparable levels, doxorubicinol is also a potent inhibitor of (Na + K)-ATPase of cardiac sarcolemma and the Mg-dependent ATPase activity referable to the F0F1 proton pump of mitochondria. For each of these ion pumps, doxorubicinol is at least 80 times more potent an inhibitor than doxorubicin. Doxorubicinol, between 10 and 50 micrograms/ml, increases resting tension up to 4-fold in isolated papillary muscles cyclically contracting at 30 times/min. Resting stress is relatively insensitive to doxorubicin. Thus, doxorubicinol is a potent inhibitor of several key cationic pumps that directly or indirectly regulate cell calcium and inhibits relaxation in the isolated fiber preparation. These observations add a new dimension to understanding the cardiotoxicity of doxorubicin.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Miocardio/metabolismo , Retículo Sarcoplasmático/metabolismo , 5'-Nucleotidasa , Animales , ATPasa de Ca(2+) y Mg(2+)/antagonistas & inhibidores , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Perros , Corazón/efectos de los fármacos , Cinética , Nucleotidasas/antagonistas & inhibidores , ATPasas de Translocación de Protón/antagonistas & inhibidores , Retículo Sarcoplasmático/efectos de los fármacos , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores
3.
Proc Natl Acad Sci U S A ; 82(21): 7256-9, 1985 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-2414773

RESUMEN

The mechanism of Ca2+ release from sarcoplasmic reticulum, which triggers contraction in skeletal muscle, remains the key unresolved problem in excitation-contraction coupling. Recently, we have described the isolation of purified fractions referable to terminal and longitudinal cisternae of sarcoplasmic reticulum. Junctional terminal cisternae are distinct in that they have a low net energized Ca2+ loading, which can be enhanced 5-fold or more by addition of ruthenium red. The loading rate, normalized for calcium pump protein content, then approaches that of longitudinal cisternae of sarcoplasmic reticulum. We now find that the ruthenium red-enhanced Ca2+ loading rate can be blocked by the previous addition of ryanodine. The inhibition constant is in the nanomolar range (20-180 nM). Ryanodine and ruthenium red have no effect on the Ca2+ loading rate of longitudinal cisternae. Direct binding studies with [3H]ryanodine localized the receptors to the terminal cisternae and not to longitudinal cisternae. Scatchard analysis of the binding data gives a dissociation constant for ryanodine in the range of the drug action on the terminal cisternae (approximately 100 nM range) with approximately 4 to 20 pmol bound per mg of protein. Ryanodine is known to be toxic in animals, leading to irreversible muscle contractures. These studies provide evidence on the mode of action of ryanodine and its localization to the terminal cisternae. The low concentration at which the drug is effective appears to account for its toxicity. Ryanodine locks the Ca2+ release channels in the "open state," so that Ca2+ is not reaccumulated and the muscle fiber cannot relax.


Asunto(s)
Alcaloides/farmacología , Canales Iónicos/efectos de los fármacos , Rianodina/farmacología , Retículo Sarcoplasmático/ultraestructura , Animales , Calcio/metabolismo , Canales Iónicos/análisis , Cinética , Contracción Muscular/efectos de los fármacos , Conejos , Rojo de Rutenio/antagonistas & inhibidores , Retículo Sarcoplasmático/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA