Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727351

RESUMEN

We developed a novel electrochemical sensor for the detection of alfuzosin (AFZ), a drug used to treat benign prostatic hyperplasia, using a double-shelled Co3O4/NiCo2O4 nanocomposite-modified electrode. The nanocomposites were synthesized using a template-assisted approach, with zeolitic imidazole framework-67 (ZIF-67) as the sacrificial template, involving the formation of uniform ZIF-67/Ni-Co layered double hydroxide (LDH) hollow structures followed by calcination to achieve the final nanocomposite. The nanocomposite was characterized by various techniques and showed high porosity, large surface area, and good conductivity. The nanocomposite-modified electrode exhibited excellent electrocatalytic activity towards AFZ oxidation, with a wide linear range of 5-180 µM and a low limit of detection of 1.37 µM. The sensor also demonstrated good repeatability, reproducibility, and stability selectivity in the presence of common interfering substances. The sensor was successfully applied to determine the AFZ in pharmaceutical tablets and human serum samples, with satisfactory recoveries. Our results suggest that the double-shelled Co3O4/NiCo2O4 nanocomposite is a promising material for the fabrication of electrochemical sensors for AFZ detection.

2.
ACS Nano ; 15(12): 19853-19863, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34807582

RESUMEN

Direct photoluminescence (PL) from metal nanoparticles (NPs) without chemical dyes is promising for sensing and imaging applications since this offers a highly tunable platform for controlling and enhancing the signals in various conditions and does not suffer from photobleaching or photoblinking. It is, however, difficult to synthesize metal NPs with a high quantum yield (QY), particularly in the near-infrared (NIR) region where deep penetration and reduced light scattering are advantageous for bioimaging. Herein, we designed and synthesized Au-Ag long-body nanosnowman structures (LNSs), facilitated by polysorbate 20 (Tween 20). The DNA-engineered conductive junction between the head and body parts results in a charge transfer plasmon (CTP) mode in the NIR region. The junction morphology can be controlled by the DNA sequence on the Au core, and polythymine and polyadenine induced thick and thin junctions, respectively. We found that the LNSs with a thicker conductive junction generates the stronger CTP peak and PL signal than the LNSs with a thinner junction. The Au-Ag LNSs showed much higher intensities in both PL and QY than widely studied Au nanorods with similar localized surface plasmon resonance wavelengths, and notably, the LNSs displayed high photostability and robust, sustainable PL signals under continuous laser exposure for >15 h. Moreover, the PL emission from Au-Ag LNSs could be imaged in a deeper scattering medium than fluorescent silica NPs. Finally, highly robust PL-based cell images can be obtained using Au-Ag LNSs without significant signal change while repetitively imaging cells. The results offer the insights in plasmonic NIR probe design, and show that chemical dye-free LNSs can be a very promising candidate with a high QY and a robust, reliable NIR PL signal for NIR sensing and imaging applications.


Asunto(s)
Nanopartículas del Metal , Nanotubos , Oro , Polisorbatos , Resonancia por Plasmón de Superficie
3.
Nano Lett ; 21(18): 7512-7518, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34491741

RESUMEN

Plasmonic electrochromism, a change in the localized surface plasmon resonance (LSPR) with an applied electric potential, has been attracting increasing attention for the development of spectroscopic tools or optoelectronic systems. There is a consensus on the mechanism of plasmonic electrochromism based on the classical capacitor and the Drude model. However, the electrochromic behaviors of metallic nanoparticles in narrow optical windows have been demonstrated only with small monotonic LSPR shifts, which limits the use of the electrochromism. Here, we observed three distinct electrochromic behaviors of gold nanocubes with a wide potential range through in situ dark-field electrospectroscopy. Interestingly, the nanocubes show a faster frequency shift under the highly negative potential, and this opens the possibility of largely tunable electrochromic LSPR shifts. The reversibility of the electrochemical switching with these cubes are also shown. We attribute this unexpected change beyond classical understandings to the material-specific quantum mechanical electronic structures of the plasmonic materials.

4.
Nanoscale ; 13(21): 9541-9552, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34019053

RESUMEN

Plasmonic electrochromism, the dependence of the colour of plasmonic materials on the applied electrical potential, has been under the spotlight recently as a key element for the development of optoelectronic devices and spectroscopic tools. In this review, we focus on the electrochromic behaviour and underlying mechanistic principles of plasmonic metal nanoparticles, whose localised surface plasmon resonance occurs in the visible part of the electromagnetic spectrum, and present a comprehensive review on the recent progress in understanding and controlling plasmonic electrochromism. The mechanisms underlying the electrochromism of plasmonic metal nanoparticles could be divided into four categories, based on the origin of the LSPR shift: (1) capacitive charging model accompanying variation in the Fermi level, (2) faradaic reactions, (3) non-faradaic reactions, and (4) electrochemically active functional molecule-mediated mechanism. We also review recent attempts to synchronise the simulation with the experimental results and the strategies to overcome the intrinsically diminutive LSPR change of the plasmonic metal nanoparticles. A better understanding and controllability of plasmonic electrochromism provides new insights into and means of the connection between photoelectrochemistry and plasmonics as well as future directions for producing advanced optoelectronic materials and devices.

5.
ACS Appl Mater Interfaces ; 13(7): 8889-8900, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33587615

RESUMEN

Polyampholyte (PA) hydrogels have great potential for biomedical applications, owing to their high toughness and good self-recovery and self-healing (SELF) behavior in addition to their physical properties similar to human tissue. However, their implementation as practical biomedical skin patches or wearable devices has so far been limited by their insufficient transdermal adhesion strength. In this work, a new polyampholytic terpolymer (PAT) hydrogel with enhanced skin adhesion was developed using a novel and simple strategy that tunes the structure of ion-pair associations (IPAs), acting as cross-links, in the hydrogel via adding an extra neutral monomer component into the network without changing the total charge balance. The PAT hydrogels were synthesized by the terpolymerization of the neutral monomer N,N-dimethylacrylamide (DMAAm) (or 2-hydroxyethyl methacrylate (HEMA)) as well as the cationic monomer 3-(methacryloylamino) propyl-trimethylammonium chloride (MPTC) and the anionic monomer sodium p-styrenesulfonate (NaSS). Their IPA, which determines their network structure, was modulated by varying the feed concentration of the neutral monomer, Cnm. An increase of Cnm within an optimized Cnm window (0.3-0.4 M) decreased the cross-linking density (strength and density of the IPAs) of the PAT hydrogels, reducing the softening temperature and Young's modulus, which increased compliance but maintained sufficient mechanical strength and thereby maximized the contact surface and enhanced skin adhesion. The DMAAm monomers, compared to the HEMA monomers, produced the higher skin adhesion of the PAT hydrogel, which was explained by the difference in their reactivity to the MPTC and NaSS. This study demonstrated this new method to develop the PAT hydrogels with excellent skin adhesion and biocompatibility while maintaining good toughness, compliance, and SELF behavior and the potential of the PAT hydrogels for biomedical skin patches and wearable devices.


Asunto(s)
Vendajes , Materiales Biocompatibles/química , Hidrogeles/química , Polímeros/química , Piel/química , Adhesividad , Animales , Humanos , Ensayo de Materiales , Ratones , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie , Temperatura , Resistencia a la Tracción
6.
J Am Chem Soc ; 143(9): 3383-3392, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33439007

RESUMEN

Despite remarkable facileness and potential in forming a wide variety of heterostructured nanoparticles with extraordinary compositional and structural complexity, one-pot synthesis of multicomponent heterostructures is largely limited by the lack of fundamental mechanistic understanding, designing principles, and well-established, generally applicable chemical methods. Herein, we developed a one-pot heterointerfacial metamorphosis (1HIM) method that allows heterointerfaces inside a particle to undergo multiple equilibrium stages to form a variety of highly crystalline heterostructured nanoparticles at a relatively low temperature (<100 °C). As proof-of-concept experiments, it was shown that widely different single-crystalline semiconductor-metal anisotropic nanoparticles with synergistic chemical, spectroscopic, and band-gap-engineering properties, including a series of metal-semiconductor nanoframes with high structural and compositional tunability, can be formed by using the 1HIM approach. 1HIM offers a new paradigm to synthesize previously unobtainable or poorly controllable heterostructures with unique or synergistic properties and functions.

7.
Sci Adv ; 6(24): eaba4942, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32577521

RESUMEN

The structural transformations of graphene defects have been extensively researched through aberration-corrected transmission electron microscopy (AC-TEM) and theoretical calculations. For a long time, a core concept in understanding the structural evolution of graphene defects has been the Stone-Thrower-Wales (STW)-type bond rotation. In this study, we show that undercoordinated atoms induce bond formation and breaking, with much lower energy barriers than the STW-type bond rotation. We refer to them as mediator atoms due to their mediating role in the breaking and forming of bonds. Here, we report the direct observation of mediator atoms in graphene defect structures using AC-TEM and annular dark-field scanning TEM (ADF-STEM) and explain their catalytic role by tight-binding molecular dynamics (TBMD) simulations and image simulations based on density functional theory (DFT) calculations. The study of mediator atoms will pave a new way for understanding not only defect transformation but also the growth mechanisms in two-dimensional materials.

8.
Nanoscale ; 11(43): 20379-20391, 2019 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-31642457

RESUMEN

Surface-enhanced Raman scattering (SERS)-based sensors utilize the electromagnetic-field enhancement of plasmonic substrates with the chemical specificity of vibrational Raman spectroscopy to identify trace amounts of a wide variety of different target analytes while being minimally affected by photobleaching. However, despite many advantageous features of this method, SERS sensors, particularly for detecting hazardous chemicals, suffer from several limitations such as requirement of gigantic signal enhancement that is often poorly controllable, subtle change and degradation of the SERS substrate, consecutive fluctuation of the signal, the lack of reliable receptors for capturing targets of interest and the absence of general principles for detecting various chemicals in different phases and matrices. To overcome these limitations and for SERS sensors to find practical use, one must (1) acknowledge the characteristics of the matrices of target systems, (2) finely engineer and tune the receptors of the SERS sensor to properly extract the target analyte from the phase, and (3) implement additional mechanistic modifications to enhance the plasmonic signal. This minireview underlines the difficulties associated with different phases and a wide range of target analytes, and introduces the practical measures undertaken to overcome the respective difficulties in SERS-based detection of hazardous chemicals.

9.
Acc Chem Res ; 52(10): 2793-2805, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31553568

RESUMEN

Plasmonic nanoparticles are widely exploited in diverse bioapplications ranging from therapeutics to biosensing and biocomputing because of their strong and tunable light-matter interactions, facile and versatile chemical/biological ligand modifications, and biocompatibility. With the rapid growth of nanobiotechnology, understanding dynamic interactions between nanoparticles and biological systems at the molecular or single-particle level is becoming increasingly important for interrogating biological systems with functional nanostructures and for developing nanoparticle-based biosensors and therapeutic agents. Therefore, significant efforts have been devoted to precisely design and create nano-bio interfaces by manipulating the nanoparticles' size, shape, and surface ligand interactions with complex biological systems to maximize their performance and avoid unwanted responses, such as their agglomeration and cytotoxicity. However, investigating physicochemical interactions at the nano-bio interfaces in a quantitative and controllable manner remains challenging, as the interfaces involve highly complex networks between nanoparticles, biomolecules, and cells across multiple scales, each with a myriad of different chemical and biological interactions. A lipid bilayer is a membrane made of two layers of lipid molecules that forms a barrier around cells and plays structural and functional roles in diverse biological processes because they incorporate and present functional molecules (such as membrane proteins) with lateral fluidity. Plasmonic nanoparticles conjugated on lipid membranes provide reliable analytical labels and functional moieties that allow for studying and manipulating interactions between nanoparticles and molecules with single-particle resolution; they also serve as efficient tools for applying optical, mechanical, and thermal stimuli to biological systems, which stem from plasmonic properties. Recently, new opportunities have emerged by interfacing nanoparticle-modified lipid bilayers (NLBs) with complex systems such as molecular circuits and living systems. In this Account, we briefly review how plasmonic properties can be beneficially harnessed on lipid bilayer membranes to investigate the structures and functions of cellular membranes and to develop new platforms for biomedical applications. In particular, we discuss the versatility of supported lipid bilayers (SLBs), which are planar lipid bilayers on hydrophilic substrates, as dynamic biomaterials that provide lateral fluidity and cell membrane-like environments. We then summarize our efforts to create a quantitative analytical platform utilizing nanoparticles as active building blocks and SLBs as integrative substrates. Through this bottom-up approach, various functionalized nanoparticles have been introduced onto lipid bilayers to render nanoparticle-nanoparticle, nanoparticle-lipid bilayer, and biomolecule-lipid bilayer interfaces programmable. Our system provides a new class of tools for studying thermodynamics and kinetics in complex networks of nanostructures and for realizing unique applications in biosensing and biocomputing.


Asunto(s)
Membrana Celular , Membrana Dobles de Lípidos , Nanopartículas , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo
10.
J Am Chem Soc ; 139(30): 10180-10183, 2017 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-28723090

RESUMEN

Multicomponent nanoparticles that incorporate multiple nanocrystal domains into a single particle represent an important class of material with highly tailorable structures and properties. The controlled synthesis of multicomponent NPs with 3 or more components in the desired structure, particularly anisotropic structure, and property is, however, challenging. Here, we developed a polymer and galvanic replacement reaction-based transformative heterointerface evolution (THE) method to form and tune gold-copper-silver multimetallic anisotropic nanoparticles (MAPs) with well-defined configurations, including structural order, particle and junction geometry, giving rise to extraordinarily high tunability in the structural design, synthesis and optical property of trimetallic plasmonic nanoantenna structures. MAPs can easily, flexibly integrate multiple surface plasmon resonance (SPR) peaks and incorporate various plasmonic field localization and enhancement within one structure. Importantly, a heteronanojunction in these MAPs can be finely controlled and hence tune the SPR properties of these structures, widely covering UV, visible and near-infrared range. The development of the THE method and new findings in synthesis and property tuning of multicomponent nanostructures pave ways to the fabrication of highly tailored multicomponent nanohybrids and realization of their applications in optics, energy, catalysis and biotechnology.

11.
Angew Chem Int Ed Engl ; 56(33): 9877-9880, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28643414

RESUMEN

The amplification- and enzyme-free quantification of DNA at ultralow concentrations, on the order of 10-1000 targets, is highly beneficial but extremely challenging. To address this challenge, true detection signals must be reliably discriminated from false or noise signals. Herein, we describe the development of associating and dissociating nanodimer analysis (ADNA) as a method that enables a maximum number of detection signals to be collected from true target-binding events while keeping nonspecific signals at a minimum level. In the ADNA assay for ultralow target concentrations, Au nanoprobes on a lipid micropattern were monitored and analyzed in situ, and newly defined dissociating dimers, which are eventually decoupled into monomers again, were incorporated into the detection results. Tens to thousands of DNA copies can be reliably quantified with excellent single-base-mismatch differentiation capability by this non-enzymatic, amplification-free ADNA method.


Asunto(s)
Técnicas Biosensibles , ADN/análisis , Nanoestructuras/química , Dimerización
12.
Acc Chem Res ; 49(12): 2746-2755, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27993009

RESUMEN

Plasmonic coupling-based electromagnetic field localization and enhancement are becoming increasingly important in chemistry, nanoscience, materials science, physics, and engineering over the past decade, generating a number of new concepts and applications. Among the plasmonically coupled nanostructures, metal nanostructures with nanogaps have been of special interest due to their ultrastrong electromagnetic fields and controllable optical properties that can be useful for a variety of signal enhancements such as surface-enhanced Raman scattering (SERS). The Raman scattering process is highly inefficient, with a very small cross-section, and Raman signals are often poorly reproducible, meaning that very strong, controllable SERS is needed to obtain reliable Raman signals with metallic nanostructures and thus open up new avenues for a variety of Raman-based applications. More specifically, plasmonically coupled metallic nanostructures with ultrasmall (∼1 nm or smaller) nanogaps can generate very strong and tunable electromagnetic fields that can generate strong SERS signals from Raman dyes in the gap, and plasmonic nanogap-enhanced Raman scattering can be defined as Raman signal enhancement from plasmonic nanogap particles with ∼1 nm gaps. However, these promising nanostructures with extraordinarily strong optical signals have shown limited use for practical applications, largely due to the lack of design principles, high-yield synthetic strategies with nanometer-level structural control and reproducibility, and systematic, reliable single-molecule/single-particle-level studies on their optical properties. All these are extremely important challenges because even small changes (<1 nm) in the structure of the coupled plasmonic nanogaps can significantly affect the plasmon mode and signal intensity. In this Account, we examine and summarize recent breakthroughs and advances in plasmonic nanogap-enhanced Raman scattering with metal nanogap particles with respect to the design and synthesis of plasmonic nanogap structures, as well as ultrasensitive and quantitative Raman signal detection using these structures. The applications and prospects of plasmonic nanogap particle-based SERS are also discussed. In particular, reliable synthetic and measurement strategies for plasmonically coupled nanostructures with ∼1 nm gap, in which both the nanogap size and the position of a Raman-active molecule in the gap can be controlled with nanometer/sub-nanometer-level precision, can address important issues regarding the synthesis and optical properties of plasmonic nanostructures, including structural and signal reproducibility. Further, single-molecule/single-particle-level studies on the plasmonic properties of these nanogap structures revealed that these particles can generate ultrastrong, quantifiable Raman signals in a highly reproducible manner.

13.
Small ; 12(34): 4726-34, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27028989

RESUMEN

Plasmonic nanostructures are widely studied and used because of their useful size, shape, composition and assembled structure-based plasmonic properties. It is, however, highly challenging to precisely design, reproducibly synthesize and reliably utilize plasmonic nanostructures with enhanced optical properties. Here, we devise a facile synthetic method to generate Au surface roughness-controlled nanobridged nanogap particles (Au-RNNPs) with ultrasmall (≈1 nm) interior gap and tunable surface roughness in a highly controllable manner. Importantly, we found that particle surface roughness can be associated with and enhance the electromagnetic field inside the interior gap, and stronger nanogap-enhanced Raman scattering (NERS) signals can be generated from particles by increasing particle surface roughness. The finite-element method-based calculation results support and are matched well with the experimental results and suggest one needs to consider particle shape, nanogap and nanobridges simultaneously to understand and control the optical properties of this type of nanostructures. Finally, the potential of multiplexed Raman detection and imaging with RNNPs and the high-speed, high-resolution Raman bio-imaging of Au-RNNPs inside cells with a wide-field Raman imaging setup with liquid crystal tunable filter are demonstrated. Our results provide strategies and principles in designing and synthesizing plasmonically enhanced nanostructures and show potential for detecting and imaging Raman nanoprobes in a highly specific, sensitive and multiplexed manner.


Asunto(s)
Imagenología Tridimensional , Nanopartículas del Metal/química , Fenómenos Ópticos , Espectrometría Raman/métodos , Línea Celular Tumoral , ADN/química , Campos Electromagnéticos , Oro/química , Humanos , Hidroxilamina/química , Nanopartículas del Metal/ultraestructura , Propiedades de Superficie
14.
Talanta ; 147: 453-9, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26592632

RESUMEN

Negatively charged multi-walled carbon nanotubes (MWCNTs) were prepared using simple sonication technique with non-toxic citric acid (CA) for the electrochemical detection of dopamine (DA). CA/MWCNTs were placed on glassy carbon (GC) electrodes by drop-casting method and then electrochemical determinations of DA were performed in the presence of highly concentrated ascorbic acid (AA). For the comparison of the charge effect on MWCNTs surface, positively charged polyethyleneimine (PEI)/MWCNT/GC electrode and pristine MWCNT/GC electrode were also prepared. Contrary to conventional GC electrode, all three types of MWCNT modified electrodes (CA/MWCNT/GC, PEI/MWCNT/GC, and pristine MWCNT/GC) can discriminate ~µM of DA from 1mM AA using cyclic voltammetry (CV) and differential pulse voltammetry (DPV) due to the inherent electrocatalytic effect of MWCNTs. Compared to positively charged PEI/MWCNT/GC and pristine MWCNT/GC electrodes, negatively charged CA/MWCNT/GC electrode remarkably enhanced the electrochemical sensitivity and selectivity of DA, showing the linear relationship between DPV signal and DA concentration in the range of 10-1000nM even in the presence of ~10(5) times concentrated AA, which is attributed to the synergistic effect of the electrostatic interaction between cationic DA molecules and negatively charged MWCNTs and the inherent electrocatalytic property of MWCNT. As a result, the limit of detection (LOD) of DA for CA/MWCNT/GC electrode was 4.2nM, which is 5.2 and 16.5 times better than those for MWCNT/GC electrode and PEI/MWCNT/GC electrode even in the presence of 1mM AA. This LOD value for DA at CA/MWCNT/GC electrode is one of the lowest values compared to the previous reports and is low enough for the early diagnosis of neurological disorder in the presence of physiological AA concentration (~0.5mM). In addition, the high selectivity and sensitivity of DA at CA/MWCNT/GC electrode were well kept even in the presence of both 1mM AA and 10µM uric acid (UA) as similar as neurophysiological concentration.


Asunto(s)
Ácido Cítrico/química , Dopamina/análisis , Nanotubos de Carbono/química , Polietileneimina/química , Ácido Ascórbico/química , Carbono/química , Dopamina/química , Técnicas Electroquímicas , Electrodos , Tecnología Química Verde , Microscopía Electrónica de Rastreo , Nanotubos de Carbono/ultraestructura , Espectroscopía Infrarroja por Transformada de Fourier , Ácido Úrico/química
15.
J Am Chem Soc ; 137(25): 8030-3, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26067225

RESUMEN

We report a robust one-dimensional (1D) nanoparticle-assembly strategy that uses the self-assembly of nanoparticles with ligand and thermal controls, polyethylene glycol (PEG) with thiol and carboxyl groups, and nanoparticle oligomer and polymer codewetting process to form ultralong and continuous 1D nanochains. The 1D nanochains were assembled with closely packed 1D nanoparticle oligomer building blocks, elongated and buttressed by dynamic 1D PEG templates formed on a hydrophobic surface via anisotropic spinodal dewetting. Using this strategy, nanoparticle-packed 1D nanochains (∼1 nm interparticle spacing) were fabricated with ∼60 nm-width and a few to >10 µm-length (nearly 20 µm in some cases) from 20 nm gold nanoparticles. Our findings offer insights and open revenues for particle assembly processes and, as given by 'universality in colloid aggregation', should be readily applicable to various nanoparticles.

16.
J Am Chem Soc ; 136(40): 14052-9, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25198151

RESUMEN

The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes.

17.
J Am Chem Soc ; 136(10): 4081-8, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24521296

RESUMEN

Observation of individual single-nanoparticle reactions provides direct information and insight for many complex chemical, physical, and biological processes, but this is utterly challenging with conventional high-resolution imaging techniques on conventional platforms. Here, we developed a photostable plasmonic nanoparticle-modified supported lipid bilayer (PNP-SLB) platform that allows for massively parallel in situ analysis of the interactions between nanoparticles with single-particle resolution on a two-dimensional (2D) fluidic surface. Each particle-by-particle PNP clustering process was monitored in real time and quantified via analysis of individual particle diffusion trajectories and single-particle-level plasmonic coupling. Importantly, the PNP-SLB-based nanoparticle cluster growth kinetics result was fitted well. As an application example, we performed a DNA detection assay, and the result suggests that our approach has very promising sensitivity and dynamic range (high attomolar to high femtomolar) without optimization, as well as remarkable single-base mismatch discrimination capability. The method shown herein can be readily applied for many different types of intermolecular and interparticle interactions and provide convenient tools and new insights for studying dynamic interactions on a highly controllable and analytical platform.


Asunto(s)
ADN/análisis , Oro/química , Membrana Dobles de Lípidos/química , Nanopartículas/química , Disparidad de Par Base , Técnicas Biosensibles , ADN/genética , Difusión , Cinética , Liposomas Unilamelares/química
18.
Chem Commun (Camb) ; 46(31): 5665-7, 2010 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-20617277

RESUMEN

The enantioselective recognition of 3,4-dihydroxyphenylalanine using penicillamine-modified gold nanoparticles has been investigated. Smaller gold nanoparticles with one enantiomeric ligand facilitate the redox reaction of only one enantiomer of 3,4-dihydroxyphenylalanine, with cross inversion for the gold nanoparticles with the other enantiomeric ligand.

19.
Chem Commun (Camb) ; 46(31): 5793-5, 2010 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-20585679

RESUMEN

Significant enhancement of the ECL signals from the Ru(bpy)(3)(2+)/TPA system was achieved when using a BDD nanograss array, mainly because of the highly facile oxidation of TPA. The facile oxidation of TPA is due to the superior properties of the BDD nanograss array, such as improved electrocatalytic activity and accelerated electron transfer.

20.
Analyst ; 135(3): 603-7, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20174717

RESUMEN

This study describes the development and characterization of a novel dendritic signal amplification strategy. It relies on the use of two different Ru(bpy)(3)(2+)-doped silica nanoparticles (Probe(1,2)RSNP and Probe(2c)RSNP) coated with complementary DNAs, which can be simply and conveniently self-assembled to build sandwich-type dendritic architectures on a gold grid. The performance of this dendritic amplification route was demonstrated in conjunction with the electrogenerated chemiluminescent (ECL) detection of the target DNA. Compared to normal amplification, dendritic amplification allowed a 5-fold enhancement of the ECL signals. The higher sensitivity allowed by the dendritic amplification route was attributed to the hybridization between the DNA (Probe(2)DNA) on Probe(1,2)RSNP (normal amplification) and the complementary DNA (Probe(2c) DNA) on the additional Probe(2c)RSNP. As low as 1 fM of 22-bp-long target DNA was clearly detected. The experimental results demonstrated that the ECL intensity achieved through dendritic amplification showed a good linear relationship with the concentration of the target DNA over a wide linear range (10 fM-10 pM).


Asunto(s)
Compuestos de Bifenilo/química , ADN/química , Mediciones Luminiscentes/métodos , Nanopartículas del Metal/química , Compuestos Organometálicos/química , Dióxido de Silicio/química , ADN/análisis , Sondas de ADN , Dendrímeros/química , Técnicas Electroquímicas , Oro/química , Técnicas de Amplificación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA