Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Commun ; 15(1): 6223, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39043658

RESUMEN

Transcription coupled-nucleotide excision repair (TC-NER) removes DNA lesions that block RNA polymerase II (Pol II) transcription. A key step in TC-NER is the recruitment of the TFIIH complex, which initiates DNA unwinding and damage verification; however, the mechanism by which TFIIH is recruited during TC-NER, particularly in yeast, remains unclear. Here, we show that the C-terminal domain (CTD) of elongation factor-1 (Elf1) plays a critical role in TC-NER in yeast by binding TFIIH. Analysis of genome-wide repair of UV-induced cyclobutane pyrimidine dimers (CPDs) using CPD-seq indicates that the Elf1 CTD in yeast is required for efficient TC-NER. We show that the Elf1 CTD binds to the pleckstrin homology (PH) domain of the p62 subunit of TFIIH in vitro, and identify a putative TFIIH-interaction region (TIR) in the Elf1 CTD that is important for PH binding and TC-NER. The Elf1 TIR shows functional, structural, and sequence similarities to a conserved TIR in the mammalian UV sensitivity syndrome A (UVSSA) protein, which recruits TFIIH during TC-NER in mammalian cells. These findings suggest that the Elf1 CTD acts as a functional counterpart to mammalian UVSSA in TC-NER by recruiting TFIIH in response to Pol II stalling at DNA lesions.


Asunto(s)
Reparación del ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Factor de Transcripción TFIIH , Factor de Transcripción TFIIH/metabolismo , Factor de Transcripción TFIIH/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Unión Proteica , Transcripción Genética , Rayos Ultravioleta , Dominios Proteicos , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Daño del ADN , Dímeros de Pirimidina/metabolismo , Reparación por Escisión
2.
J Am Chem Soc ; 146(9): 6274-6282, 2024 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-38393762

RESUMEN

Oxidative DNA lesions cause significant detrimental effects on a living species. Two major DNA lesions resulting from dG oxidation, 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-OxodGuo) and formamidopyrimidine (Fapy·dG), are produced from a common chemical intermediate. Fapy·dG is formed in comparable yields under oxygen-deficient conditions. Replicative bypass of Fapy·dG in human cells is more mutagenic than that of 8-OxodGuo. Despite the biological importance of transcriptional mutagenesis, there are no reports of the effects of Fapy·dG on RNA polymerase II (Pol II) activity. Here we perform comprehensive kinetic studies to investigate the impact of Fapy·dG on three key transcriptional fidelity checkpoint steps by Pol II: insertion, extension, and proofreading steps. The ratios of error-free versus error-prone incorporation opposite Fapy·dG are significantly reduced in comparison with undamaged dG. Similarly, Fapy·dG:A mispair is extended with comparable efficiency as that of the error-free, Fapy·dG:C base pair. The α- and ß-configurational isomers of Fapy·dG have distinct effects on Pol II insertion and extension. Pol II can preferentially cleave error-prone products by proofreading. To further understand the structural basis of transcription processing of Fapy·dG, five different structures were solved, including Fapy·dG template-loading state (apo), error-free cytidine triphosphate (CTP) binding state (prechemistry), error-prone ATP binding state (prechemistry), error-free Fapy·dG:C product state (postchemistry), and error-prone Fapy·dG:A product state (postchemistry), revealing distinctive nucleotide binding and product states. Taken together, our study provides a comprehensive mechanistic framework for better understanding how Fapy·dG lesions impact transcription and subsequent pathological consequences.


Asunto(s)
Daño del ADN , Pirimidinas , ARN Polimerasa II , Humanos , ARN Polimerasa II/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina , Cinética , Mutagénesis , Desoxiguanosina
3.
Proc Natl Acad Sci U S A ; 121(3): e2314245121, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38194460

RESUMEN

Transcription-coupled nucleotide excision repair (TC-NER) is a highly conserved DNA repair pathway that removes bulky lesions in the transcribed genome. Cockayne syndrome B protein (CSB), or its yeast ortholog Rad26, has been known for decades to play important roles in the lesion-recognition steps of TC-NER. Another conserved protein ELOF1, or its yeast ortholog Elf1, was recently identified as a core transcription-coupled repair factor. How Rad26 distinguishes between RNA polymerase II (Pol II) stalled at a DNA lesion or other obstacles and what role Elf1 plays in this process remains unknown. Here, we present cryo-EM structures of Pol II-Rad26 complexes stalled at different obstacles that show that Rad26 uses a common mechanism to recognize a stalled Pol II, with additional interactions when Pol II is arrested at a lesion. A cryo-EM structure of lesion-arrested Pol II-Rad26 bound to Elf1 revealed that Elf1 induces further interactions between Rad26 and a lesion-arrested Pol II. Biochemical and genetic data support the importance of the interplay between Elf1 and Rad26 in TC-NER initiation. Together, our results provide important mechanistic insights into how two conserved transcription-coupled repair factors, Rad26/CSB and Elf1/ELOF1, work together at the initial lesion recognition steps of transcription-coupled repair.


Asunto(s)
Reparación por Escisión , Paro Cardíaco , Humanos , Cognición , Daño del ADN , ARN Polimerasa II/genética , Saccharomyces cerevisiae/genética
4.
Nat Commun ; 15(1): 389, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195598

RESUMEN

Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation, containing an unnatural nucleotide for studying novel base pair recognition. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle during data acquisition. These results reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.


Asunto(s)
Benchmarking , Sistemas de Computación , Microscopía por Crioelectrón , Anisotropía , Recolección de Datos
5.
Nat Commun ; 14(1): 8219, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38086811

RESUMEN

Artificially Expanded Genetic Information Systems (AEGIS) add independently replicable unnatural nucleotide pairs to the natural G:C and A:T/U pairs found in native DNA, joining the unnatural pairs through alternative modes of hydrogen bonding. Whether and how AEGIS pairs are recognized and processed by multi-subunit cellular RNA polymerases (RNAPs) remains unknown. Here, we show that E. coli RNAP selectively recognizes unnatural nucleobases in a six-letter expanded genetic system. High-resolution cryo-EM structures of three RNAP elongation complexes containing template-substrate UBPs reveal the shared principles behind the recognition of AEGIS and natural base pairs. In these structures, RNAPs are captured in an active state, poised to perform the chemistry step. At this point, the unnatural base pair adopts a Watson-Crick geometry, and the trigger loop is folded into an active conformation, indicating that the mechanistic principles underlying recognition and incorporation of natural base pairs also apply to AEGIS unnatural base pairs. These data validate the design philosophy of AEGIS unnatural basepairs. Further, we provide structural evidence supporting a long-standing hypothesis that pair mismatch during transcription occurs via tautomerization. Together, our work highlights the importance of Watson-Crick complementarity underlying the design principles of AEGIS base pair recognition.


Asunto(s)
ADN , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , ADN/metabolismo , Emparejamiento Base , Nucleótidos/química , Enlace de Hidrógeno
6.
bioRxiv ; 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37503021

RESUMEN

Structural biology efforts using cryogenic electron microscopy are frequently stifled by specimens adopting "preferred orientations" on grids, leading to anisotropic map resolution and impeding structure determination. Tilting the specimen stage during data collection is a generalizable solution but has historically led to substantial resolution attenuation. Here, we develop updated data collection and image processing workflows and demonstrate, using multiple specimens, that resolution attenuation is negligible or significantly reduced across tilt angles. Reconstructions with and without the stage tilted as high as 60° are virtually indistinguishable. These strategies allowed the reconstruction to 3 Å resolution of a bacterial RNA polymerase with preferred orientation. Furthermore, we present a quantitative framework that allows cryo-EM practitioners to define an optimal tilt angle for dataset acquisition. These data reinforce the utility of employing stage tilt for data collection and provide quantitative metrics to obtain isotropic maps.

7.
Nat Commun ; 14(1): 195, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36635281

RESUMEN

Bacteriophage T7 RNA polymerase (T7 RNAP) is widely used for synthesizing RNA molecules with synthetic modifications and unnatural base pairs (UBPs) for a variety of biotechnical and therapeutic applications. However, the molecular basis of transcription recognition of UBPs by T7 RNAP remains poorly understood. Here we focused on a representative UBP, 7-(2-thienyl)-imidazo[4,5-b]pyridine (Ds) and pyrrole 2-carbaldehyde (Pa), and investigated how the hydrophobic Ds-Pa pair is recognized by T7 RNAP. Our kinetic assays revealed that T7 RNAP selectively recognizes the Ds or Pa base in the templates and preferentially incorporates their cognate unnatural base nucleotide substrate (PaTP or DsTP) over natural NTPs. Our structural studies reveal that T7 RNAP recognizes the unnatural substrates at the pre-insertion state in a distinct manner compared to natural substrates. These results provide mechanistic insights into transcription recognition of UBP by T7 RNAP and provide valuable information for designing the next generation of UBPs.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Transcripción Genética , Emparejamiento Base , ARN Polimerasas Dirigidas por ADN/metabolismo , Proteínas Virales , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , ARN/química
8.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35022237

RESUMEN

Elongating RNA polymerase II (Pol II) can be paused or arrested by a variety of obstacles. These obstacles include DNA lesions, DNA-binding proteins, and small molecules. Hairpin pyrrole-imidazole (Py-Im) polyamides bind to the minor groove of DNA in a sequence-specific manner and induce strong transcriptional arrest. Remarkably, this Py-Im-induced Pol II transcriptional arrest is persistent and cannot be rescued by transcription factor TFIIS. In contrast, TFIIS can effectively rescue the transcriptional arrest induced by a nucleosome barrier. The structural basis of Py-Im-induced transcriptional arrest and why TFIIS cannot rescue this arrest remain elusive. Here we determined the X-ray crystal structures of four distinct Pol II elongation complexes (Pol II ECs) in complex with hairpin Py-Im polyamides as well as of the hairpin Py-Im polyamides-dsDNA complex. We observed that the Py-Im oligomer directly interacts with RNA Pol II residues, introduces compression of the downstream DNA duplex, prevents Pol II forward translocation, and induces Pol II backtracking. These results, together with biochemical studies, provide structural insight into the molecular mechanism by which Py-Im blocks transcription. Our structural study reveals why TFIIS fails to promote Pol II bypass of Py-Im-induced transcriptional arrest.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , ARN Polimerasa II/metabolismo , Transcripción Genética , Secuencia de Bases , Imidazoles/química , Modelos Moleculares , Pirroles/química , Factores de Elongación Transcripcional/metabolismo
9.
Nat Commun ; 12(1): 7001, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853308

RESUMEN

Transcription-coupled repair is essential for the removal of DNA lesions from the transcribed genome. The pathway is initiated by CSB protein binding to stalled RNA polymerase II. Mutations impairing CSB function cause severe genetic disease. Yet, the ATP-dependent mechanism by which CSB powers RNA polymerase to bypass certain lesions while triggering excision of others is incompletely understood. Here we build structural models of RNA polymerase II bound to the yeast CSB ortholog Rad26 in nucleotide-free and bound states. This enables simulations and graph-theoretical analyses to define partitioning of this complex into dynamic communities and delineate how its structural elements function together to remodel DNA. We identify an allosteric pathway coupling motions of the Rad26 ATPase modules to changes in RNA polymerase and DNA to unveil a structural mechanism for CSB-assisted progression past less bulky lesions. Our models allow functional interpretation of the effects of Cockayne syndrome disease mutations.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , Reparación del ADN , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo , Adenosina Trifosfatasas , Síndrome de Cockayne/genética , Biología Computacional , Microscopía por Crioelectrón , ADN/química , ADN/metabolismo , ADN Helicasas/genética , Enzimas Reparadoras del ADN/metabolismo , Humanos , Modelos Moleculares , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN Polimerasa II/genética
10.
J Phys Chem Lett ; 12(41): 10218-10224, 2021 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-34647735

RESUMEN

Vibrational sum-frequency generation (VSFG) spectroscopy, a surface-specific technique, was shown to be useful even for characterizing the vibrational optical activity of chiral molecules in isotropic bulk liquids. However, accurately determining the spectroscopic parameters is still challenging because of the spectral congestion of chiroptical VSFG peaks with different amplitudes and phases. Here, we show that a time-variable infrared-visible chiroptical three-wave-mixing technique can be used to determine the spectroscopic parameters of second-order vibrational response signals from chiral chemical liquids. For varying the delay time between infrared and temporally asymmetric visible laser pulses, we measure the chiral VSFG, achiral VSFG, and their interference spectra of bulk R-(+)-limonene liquid and perform a global fitting analysis for those time-variable spectra to determine their spectroscopic parameters accurately. We anticipate that this time-variable VSFG approach will be useful for developing nearly background-free chiroptical characterization techniques with enhanced spectral resolution.

11.
Nat Chem Biol ; 17(8): 906-914, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34140682

RESUMEN

The development of unnatural base pairs (UBPs) has greatly increased the information storage capacity of DNA, allowing for transcription of unnatural RNA by the heterologously expressed T7 RNA polymerase (RNAP) in Escherichia coli. However, little is known about how UBPs are transcribed by cellular RNA polymerases. Here, we investigated how synthetic unnatural nucleotides, NaM and TPT3, are recognized by eukaryotic RNA polymerase II (Pol II) and found that Pol II is able to selectively recognize UBPs with high fidelity when dTPT3 is in the template strand and rNaMTP acts as the nucleotide substrate. Our structural analysis and molecular dynamics simulation provide structural insights into transcriptional processing of UBPs in a stepwise manner. Intriguingly, we identified a novel 3'-RNA binding site after rNaM addition, termed the swing state. These results may pave the way for future studies in the design of transcription and translation strategies in higher organisms with expanded genetic codes.


Asunto(s)
Eucariontes/enzimología , ARN Polimerasa II/genética , Transcripción Genética/genética , Emparejamiento Base , Simulación de Dinámica Molecular , ARN Polimerasa II/química , ARN Polimerasa II/metabolismo
12.
Adv Exp Med Biol ; 1310: 211-238, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33834439

RESUMEN

Live cell imaging provides essential information in the investigation of cell biology and related pathophysiology. Refractive index (RI) can serve as intrinsic optical imaging contrast for 3-D label-free and quantitative live cell imaging, and provide invaluable information to understand various dynamics of cells and tissues for the study of numerous fields. Recently significant advances have been made in imaging methods and analysis approaches utilizing RI, which are now being transferred to biological and medical research fields, providing novel approaches to investigate the pathophysiology of cells. To provide insight into how RI can be used as an imaging contrast for imaging of biological specimens, here we provide the basic principle of RI-based imaging techniques and summarize recent progress on applications, ranging from microbiology, hematology, infectious diseases, hematology, and histopathology.


Asunto(s)
Diagnóstico por Imagen , Refractometría , Pruebas Diagnósticas de Rutina
13.
Nature ; 593(7859): 418-423, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33727703

RESUMEN

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Asunto(s)
Antivirales/farmacología , Clofazimina/farmacología , Coronavirus/clasificación , Coronavirus/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Adenosina Monofosfato/uso terapéutico , Alanina/análogos & derivados , Alanina/farmacología , Alanina/uso terapéutico , Animales , Antiinflamatorios/farmacocinética , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antivirales/farmacocinética , Antivirales/uso terapéutico , Disponibilidad Biológica , Fusión Celular , Línea Celular , Clofazimina/farmacocinética , Clofazimina/uso terapéutico , Coronavirus/crecimiento & desarrollo , Coronavirus/patogenicidad , Cricetinae , ADN Helicasas/antagonistas & inhibidores , Sinergismo Farmacológico , Femenino , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Masculino , Mesocricetus , Profilaxis Pre-Exposición , SARS-CoV-2/crecimiento & desarrollo , Especificidad de la Especie , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Transcripción Genética/efectos de los fármacos , Transcripción Genética/genética
14.
Biochim Biophys Acta Gene Regul Mech ; 1864(1): 194659, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33271312

RESUMEN

Transcription elongation by RNA polymerase II (Pol II) is constantly challenged by numerous types of obstacles that lead to transcriptional pausing or stalling. These obstacles include DNA lesions, DNA epigenetic modifications, DNA binding proteins, and non-B form DNA structures. In particular, lesion-induced prolonged transcriptional blockage or stalling leads to genome instability, cellular dysfunction, and cell death. Transcription-coupled nucleotide excision repair (TC-NER) pathway is the first line of defense that detects and repairs these transcription-blocking DNA lesions. In this review, we will first summarize the recent research progress toward understanding the molecular basis of transcriptional pausing and stalling by different kinds of obstacles. We will then discuss new insights into Pol II-mediated lesion recognition and the roles of CSB in TC-NER.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN Forma B/metabolismo , Epigénesis Genética , ARN Polimerasa II/metabolismo , Transcripción Genética , Humanos
15.
Proc Natl Acad Sci U S A ; 117(41): 25486-25493, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32989164

RESUMEN

While loss-of-function mutations in Cockayne syndrome group B protein (CSB) cause neurological diseases, this unique member of the SWI2/SNF2 family of chromatin remodelers has been broadly implicated in transcription elongation and transcription-coupled DNA damage repair, yet its mechanism remains largely elusive. Here, we use a reconstituted in vitro transcription system with purified polymerase II (Pol II) and Rad26, a yeast ortholog of CSB, to study the role of CSB in transcription elongation through nucleosome barriers. We show that CSB forms a stable complex with Pol II and acts as an ATP-dependent processivity factor that helps Pol II across a nucleosome barrier. This noncanonical mechanism is distinct from the canonical modes of chromatin remodelers that directly engage and remodel nucleosomes or transcription elongation factors that facilitate Pol II nucleosome bypass without hydrolyzing ATP. We propose a model where CSB facilitates gene expression by helping Pol II bypass chromatin obstacles while maintaining their structures.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Nucleosomas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Polimerasa II/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , ADN Helicasas/genética , Enzimas Reparadoras del ADN/genética , ADN de Hongos , Escherichia coli , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Modelos Moleculares , Mutación , Proteínas de Unión a Poli-ADP-Ribosa/genética , Conformación Proteica , ARN Polimerasa II/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
16.
Proc Natl Acad Sci U S A ; 117(17): 9338-9348, 2020 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-32284409

RESUMEN

Oxidation of guanine generates several types of DNA lesions, such as 8-oxoguanine (8OG), 5-guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp). These guanine-derived oxidative DNA lesions interfere with both replication and transcription. However, the molecular mechanism of transcription processing of Gh and Sp remains unknown. In this study, by combining biochemical and structural analysis, we revealed distinct transcriptional processing of these chemically related oxidized lesions: 8OG allows both error-free and error-prone bypass, whereas Gh or Sp causes strong stalling and only allows slow error-prone incorporation of purines. Our structural studies provide snapshots of how polymerase II (Pol II) is stalled by a nonbulky Gh lesion in a stepwise manner, including the initial lesion encounter, ATP binding, ATP incorporation, jammed translocation, and arrested states. We show that while Gh can form hydrogen bonds with adenosine monophosphate (AMP) during incorporation, this base pair hydrogen bonding is not sufficient to hold an ATP substrate in the addition site and is not stable during Pol II translocation after the chemistry step. Intriguingly, we reveal a unique structural reconfiguration of the Gh lesion in which the hydantoin ring rotates ∼90° and is perpendicular to the upstream base pair planes. The perpendicular hydantoin ring of Gh is stabilized by noncanonical lone pair-π and CH-π interactions, as well as hydrogen bonds. As a result, the Gh lesion, as a functional mimic of a 1,2-intrastrand crosslink, occupies canonical -1 and +1 template positions and compromises the loading of the downstream template base. Furthermore, we suggest Gh and Sp lesions are potential targets of transcription-coupled repair.


Asunto(s)
Guanidinas/química , Guanosina/análogos & derivados , Hidantoínas/química , ARN Polimerasa II/metabolismo , Compuestos de Espiro/química , Emparejamiento Base , ADN/química , ADN/metabolismo , Daño del ADN/fisiología , Reparación del ADN/fisiología , Guanidinas/metabolismo , Guanina/metabolismo , Guanosina/química , Guanosina/metabolismo , Hidantoínas/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Purinas/metabolismo , ARN Polimerasa II/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Compuestos de Espiro/metabolismo , Transcripción Genética/fisiología , Activación Transcripcional/fisiología
17.
Proc Natl Acad Sci U S A ; 117(6): 2886-2893, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988135

RESUMEN

Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA (cDNA) synthesis to generate initial material for library preparation. Here we use bacterial transposase Tn5, which has been increasingly used in various high-throughput DNA analyses, to construct RNA-seq libraries without second-strand synthesis. We show that Tn5 transposome can randomly bind RNA/DNA heteroduplexes and add sequencing adapters onto RNA directly after reverse transcription. This method, Sequencing HEteRo RNA-DNA-hYbrid (SHERRY), is versatile and scalable. SHERRY accepts a wide range of starting materials, from bulk RNA to single cells. SHERRY offers a greatly simplified protocol and produces results with higher reproducibility and GC uniformity compared with prevailing RNA-seq methods.


Asunto(s)
ADN/genética , ARN/genética , Análisis de Secuencia de ARN/métodos , Quimera/genética , ADN Complementario/genética , Biblioteca de Genes , Células HEK293 , Células HeLa , Humanos , Análisis de la Célula Individual , Transposasas/metabolismo
18.
J Struct Biol ; 207(3): 270-278, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31200019

RESUMEN

Despite significant advances in all aspects of single particle cryo-electron microscopy (cryo-EM), specimen preparation still remains a challenge. During sample preparation, macromolecules interact with the air-water interface, which often leads to detrimental effects such as denaturation or adoption of preferred orientations, ultimately hindering structure determination. Randomly biotinylating the protein of interest (for example, at its primary amines) and then tethering it to a cryo-EM grid coated with two-dimensional crystals of streptavidin (acting as an affinity surface) can prevent the protein from interacting with the air-water interface. Recently, this approach was successfully used to solve a high-resolution structure of a test sample, a bacterial ribosome. However, whether this method can be used for samples where interaction with the air-water interface has been shown to be problematic remains to be determined. Here we report a 3.1 Šstructure of an RNA polymerase II elongation complex stalled at a cyclobutane pyrimidine dimer lesion (Pol II EC(CPD)) solved using streptavidin grids. Our previous attempt to solve this structure using conventional sample preparation methods resulted in a poor quality cryo-EM map due to Pol II EC(CPD)'s adopting a strong preferred orientation. Imaging the same sample on streptavidin grids improved the angular distribution of its view, resulting in a high-resolution structure. This work shows that streptavidin affinity grids can be used to address known challenges posed by the interaction with the air-water interface.


Asunto(s)
Daño del ADN , Dímeros de Pirimidina/química , ARN Polimerasa II/química , Proteínas de Saccharomyces cerevisiae/química , Biotinilación , Microscopía por Crioelectrón , Cristalización , Modelos Moleculares , Conformación Proteica , Dímeros de Pirimidina/metabolismo , ARN Polimerasa II/metabolismo , ARN Polimerasa II/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estreptavidina/química , Agua/química
19.
J Struct Biol ; 206(1): 110-118, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30822455

RESUMEN

Nitrogen remobilization is a key issue in plants. Recent studies in Arabidopsis thaliana have revealed that nucleoside catabolism supplies xanthine, a nitrogen-rich compound, to the purine ring catabolic pathway, which liberates ammonia from xanthine for reassimilation into amino acids. Similarly, pyrimidine nuclosides are degraded and the pyrimidine bases are fully catabolized. During nucleoside hydrolysis, ribose is released, and ATP-dependent ribokinase (RBSK) phosphorylates ribose to ribose-5'-phosphate to allow its entry into central metabolism recycling the sugar carbons from nucleosides. In this study, we report the crystal structure of RBSK from Arapidopsis thaliana (AtRBSK) in three different ligation states: an unliganded state, a ternary complex with ribose and ATP, and a binary complex with ATP in the presence of Mg2+. In the monomeric conformation, AtRBSK is highly homologous to bacterial RBSKs, including the binding sites for a monovalent cation, ribose, and ATP. Its dimeric conformation, however, does not exhibit the noticeable ligand-induced changes that were observed in bacterial orthologs. Only in the presence of Mg2+, ATP in the binary complex adopts a catalytically competent conformation, providing a mode of action for Mg2+ in AtRBSK activity. The structural data combined with activity analyses of mutants allowed assignment of functional roles for the active site residues. Overall, this study provides the first structural characterization of plant RBSK, and experimentally validates a previous hypothetical model concerning the general reaction mechanism of RBSK.


Asunto(s)
Proteínas de Arabidopsis/genética , Mutación , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Sitios de Unión/genética , Dominio Catalítico , Cristalografía por Rayos X , Análisis Mutacional de ADN/métodos , Magnesio/química , Magnesio/metabolismo , Modelos Moleculares , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Conformación Proteica , Ribosa/química , Ribosa/metabolismo , Homología de Secuencia de Aminoácido
20.
Methods ; 159-160: 29-34, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30797902

RESUMEN

Transcription, catalyzed by RNA polymerase II (Pol II) in eukaryotes, is the first step in gene expression. RNA Pol II is a 12-subunit enzyme complex regulated by many different transcription factors during transcription initiation, elongation, and termination. During elongation, Pol II encounters various types of obstacles that can cause transcriptional pausing and arrest. Through decades of research on transcriptional pausing, it is widely known that Pol II can distinguish between different types of obstacles by its active site. A major class of obstacles is DNA lesions. While some DNA lesions can cause transient transcriptional pausing, which can be bypassed by Pol II itself or with the help from other elongation factors, bulky DNA damage can cause prolonged transcriptional pausing and arrest, which signals for transcription coupled repair. Using biochemical and structural biology approaches, the outcomes of many different types of DNA lesions, DNA modifications, and DNA binding molecules to transcription were studied. In this mini review, we will describe the in vitro transcription assays with Pol II to investigate the impacts of various DNA lesions on transcriptional outcomes and the crystallization method of lesion-arrested Pol II complex. These methods can provide a general platform for the structural and biochemical analysis of Pol II transcriptional pausing and bypass mechanisms.


Asunto(s)
Cristalografía/métodos , Daño del ADN , ARN Polimerasa II/metabolismo , Transcripción Genética , ADN/metabolismo , Reparación del ADN , Eucariontes/enzimología , Eucariontes/genética , Eucariontes/metabolismo , Conformación de Ácido Nucleico , Conformación Proteica , Levaduras/enzimología , Levaduras/genética , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA