Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Small ; 20(25): e2306543, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38196152

RESUMEN

The fabrication of flexible composites by integrating metal-organic frameworks (MOFs) with flexible substrates is a critical strategy for developing advanced materials with excellent feasibility and processability. These flexible MOF-based composites play a particularly important role in the separation and purification processes. However, several drawbacks remain challenge to overcome such as long processing time, high-cost, complicated processes, or harsh reaction conditions. In this paper, a convenient and efficient method is reported for fabricating MOF/fiber composites using a simple drop-and-drain (D&D) process. By exploiting the electrostatic interactions between the positively charged MOF particles and negatively charged fiber-based flexible substrates, a uniform coating of MOF on flexible fibers are achieved. This is accomplished by allowing the MOF ink to drop and drain through a substrate using a custom-made Teflon cell. Additionally, the D&D method enables the production of multiple layers of composites in a single-step process. UiO-66 and ZIF-8 submicroparticles and various substrates such as cotton-pad, cotton-fabric, nylon-fabric, PET-fabric, and filter-paper are employed to create flexible MOF/fiber composites. These composites demonstrate outstanding capacities for capturing negatively charged organic dyes, including methyl orange and indigo carmine. Furthermore, the MOF/fiber composites can be reused for dye capture after a simple washing process.

2.
J Am Chem Soc ; 145(50): 27397-27406, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38078409

RESUMEN

Here, we report the synthesis of three-dimensional plasmonic nanolenses for strong near-field focusing. The nanolens exhibits a distinctive structural arrangement composed of nanoporous sponge-like networks within their interior. We denote these novel nanoparticles as "Au octahedral nanosponges" (Au Oh NSs). Employing a carefully planned multistep synthetic approach with Au octahedra serving as sacrificial templates, we successfully synthesized Au Oh NSs in solution. The porous domains resembling sponges contributed to enhanced scattering and absorption of incident light within metal ligaments. This optical energy was subsequently transferred to the nanospheres at the vertex, where near-field focusing was maximized. We named this observed enhancement a "lightning-sphere effect". Using single particle-by-particle surface-enhanced Raman scattering (SERS), we optimized the morphological dimensions of the spheres and porous domains to achieve the most effective near-field focusing. In the context of bulk SERS measurements targeting weakly adsorbing analytes (2-chloroethyl phenyl sulfide) in the gas phase, we achieved a low detection limit of 10 ppb. For nonadsorbing species (dimethyl methyl phosphonate), utilization of hybrid SERS substrates consisting of Au Oh NSs and metal-organic frameworks as gas-adsorbing intermediate layers was highly effective for successful SERS detection.

3.
Nanoscale Adv ; 5(23): 6449-6457, 2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38024321

RESUMEN

Efficient adsorption of hazardous substances from the environment is crucial owing to the considerable risks they pose to both humans and ecosystems. Consequently, the development of porous materials with strong adsorption capabilities for hazardous substances, such as chemical warfare agents (CWAs), is pivotal for safeguarding human lives. Specifically, the early-stage adsorption proficiency of the adsorbents plays a vital role in determining their effectiveness as ideal adsorbents. Herein, we report the efficient adsorption of CWA simulants using thermally treated ZIF-8 (T-ZIF-8). The T-ZIF-8 samples were prepared by subjecting ZIF-8 to a simple thermal treatment, which resulted in a more positive surface charge with extra open metal sites. Although the pore volume of T-ZIF-8 decreased after thermal treatment, the positive surface charge of T-ZIF-8 proved advantageous for the adsorption of the CWA simulants. As a result, the adsorption capacity of T-ZIF-8 for the CWA simulants improved compared to that of pure ZIF-8. Notably, T-ZIF-8 exhibited a remarkably enhanced adsorption ability in the early stage of exposure to the CWA simulants, possibly due to the effective polar interactions between T-ZIF-8 and the simulants via the electron-rich components within the CWA simulants. Moreover, the enhanced adsorption capacity of T-ZIF-8 led to the fast degradation of simulant compared to pure ZIF-8. T-ZIF-8 also demonstrated excellent stability over three adsorption cycles. These findings highlight that T-ZIF-8 is an outstanding material for the early-stage adsorption and degradation of CWA simulants, offering high effectiveness and stability.

4.
Dalton Trans ; 52(34): 12143-12151, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37584168

RESUMEN

The development of effective porous adsorbents plays a vital role in eliminating hazardous substances from the environment. Toxic chemicals, including chemical warfare agents (CWAs), pose significant risks to both humans and ecosystems, highlighting the urgency to create efficient porous adsorbents. Therefore, substantial attention has been directed towards advancing adsorption techniques for the successful eradication of CWAs from the environment. Herein, we demonstrate a rational approach for enhancing the adsorption capability of a porous metal-organic framework (MOF) by employing ancillary open metal sites within the MOF structure. To generate defective MOF-74 (D-MOF-74) with ancillary open metal sites, some of the 2,5-dihydroxy-1,4-bezenedicarboxylic acid (DHBDC) linkers originally present in the MOF-74 structure were replaced with 1,4-benzenedicarboxylic acid (BDC) linkers. The absence of hydroxyl groups in the BDC linkers compared to the original DHBDC linkers creates ancillary open metal sites, which enhance the adsorption ability of D-MOF-74 for CWA simulants such as dimethyl methyl phosphonate, 2-chloroethyl ethyl sulfide, and methyl salicylate by providing effective interaction sites for the targeted molecules. However, excessive creation of open metal sites causes the collapse of the originally well-developed MOF-74 structure, resulting in a substantial reduction in its empty space and a subsequent decline in adsorption efficiency. Thus, to produce a defective MOF with the best performance, it is necessary to replace an appropriate amount of organic linker and create suitable open metal sites. Moreover, D-MOF-74 displays excellent recyclability during consecutive adsorption cycles without losing its original structure and morphology, suggesting that D-MOF-74 is an effective and stable material for the removal of CWA simulants.

5.
Sci Rep ; 13(1): 12250, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37507523

RESUMEN

The effective separation of toxic chemicals, including chemical warfare agents (CWAs), from the environment via adsorption is of great importance because such chemicals pose a significant threat to humans and ecosystems. To this end, the development of effective porous adsorbents for CWA removal has received significant attention. Understanding the specific interactions between adsorbents and CWAs must precede for the development of effective adsorbents. Herein, we report the relationship between the adsorption capacity of porous ZIF-8 and its morphological and surface characteristics. Four types of ZIF-8, which have different morphologies (such as cubic, rhombic dodecahedron, and leaf- and plate-shaped samples), were selectively prepared. The four types of ZIF-8 were found to have different surface charges owing to dissimilarly exposed components on the surfaces and additionally incorporated components. The specific surface charges of ZIF-8 were found to be closely related to their adsorption capacities for CWA simulants such as 2-chloroethyl ethyl sulfide (CEES) and dimethyl methyl phosphonate (DMMP). Cubic ZIF-8, with the most positive surface charge among four ZIF-8 samples, exhibited the highest adsorption capacity for CEES and DMMP via the effective polar interaction. Moreover, ZIF-8 exhibited excellent recyclability without losing its adsorption capacity and without critical morphological or structural changes.

6.
Small ; 19(36): e2303580, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37246265

RESUMEN

The structures of metal-organic frameworks (MOFs) are typically determined by the building blocks that compose them and the conditions under which they are formed. MOFs tend to adopt a thermodynamically and/or kinetically stable structure (naturally preferred form). Thus, constructing MOFs with naturally nonpreferred structures is a challenging task, as it requires avoiding the easier pathway toward a naturally preferred MOF. Herein, an approach to construct naturally nonpreferred dicarboxylate-linked MOFs employing reaction templates is reported. This strategy relies on the registry between the surface of the template and the cell lattice of a target MOF, which reduces the effort required to form naturally nonpreferred MOFs. Reactions of p-block trivalent metal ions (Ga3+ and In3+ ) with dicarboxylic acids typically produce preferred MIL-53 or MIL-68. However, the surface of UiO-67 (and UiO-66) template exhibits the well-defined hexagonal lattice, which induce the selective formation of a naturally nonpreferred MIL-88 structure. Inductively grown MIL-88s are purely isolated from the template via provoking a post-mismatch in their lattices and weakening the interfacial interaction between product and template. It is also discovered that an appropriate template for effective induced production of naturally nonpreferred MOFs shall be properly selected based on the cell lattice of a target MOF.

7.
RSC Adv ; 13(12): 8220-8226, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36922955

RESUMEN

Numerous open metal sites and well-developed micropores are the two most significant characteristics that should be imparted to design metal-organic frameworks (MOFs) as effective catalysts. However, the construction of the best MOF catalyst with both these characteristics is challenging because the creation of numerous open metal sites generally triggers some structural collapse of the MOF. Herein, we report the construction of well-structured but defected MOFs through the growth of defected MOFs, where some of the original organic linkers were replaced with analog organic linkers, on the surface of a crystalline MOF template (MOF-on-MOF growth). Additional open metal sites within the MOF-74 structure were generated by replacing some of the 2,5-dihydroxy-1,4-bezenedicarboxylic acid presenting in MOF-74 with 1,4-benzenedicarboxylic acid due to the missing hydroxyl groups. And the resulting additional open metal sites within the MOF-74 structure resulted in enhanced catalytic activity for the cyanosilylation of aldehydes. However, the collapse of some of the well-developed MOF-74 structure was also followed by structural defects. Whereas, the growth of defected MOF-74 (D-MOF-74) on the well-crystallized MOF-74 template led to the production of relatively well-crystallized D-MOF-74. Core-shell type MOF-74@D-MOF-74 having abundant open metal sites with a preserved crystallinity exhibited the efficient catalytic cyanosilylation of several aldehydes. Additionally, MOF-74@D-MOF-74 displayed excellent recyclability during the consecutive catalytic cycles.

8.
Small Methods ; 7(6): e2201586, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36802140

RESUMEN

The structural control of metal-organic frameworks (MOFs) is essential for the development of superlative MOFs because the structural features of MOFs and their components play a critical role in determining their properties, and ultimately, their applications. The best components to endow the desired properties for MOFs are available via the appropriate choice from many existing chemicals or synthesizing new ones. However, to date, considerably less information exists regarding fine-tuning the MOF structures. Herein, a strategy for tuning MOF structures by merging two MOF structures into a single MOF, is demonstrated. Depending on the incorporated amounts and relative contributions of the two coexisting organic linkers, benzene-1,4-dicarboxylate (BDC2- ) and naphthalene-1,4-dicarboxylate (NDC2- ), which have conflicting spatial-arrangement preferences within an MOF structure, MOFs are rationally designed to have a Kagomé or rhombic lattice. In particular, MOFs with rhombic lattices are constructed to have specific lattice angles by compromising the optimal structural arrangements between the two mixed linkers. The relative contributions of the two linkers during MOF construction determine the final MOF structures, and the competitive influence between BDC2- and NDC2- is effectively regulated to produce specific MOF structures with controlled lattices.

9.
Inorg Chem ; 61(41): 16501-16508, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36194247

RESUMEN

Precisely constructed porous composites containing catalytically active nanoparticles can stabilize unstable nanoparticles, thus improving catalytic activity and longevity while preventing agglomeration of active nanoparticles. Herein, we report the confined incorporation of highly active metal nanoparticles within a metal-organic framework support and efficient catalytic performances in the reduction of organic pollutants, such as methylene blue (MB) and 4-nitrophenol (4-NP). UiO-66-based porous composites (M@UiO-66, M = Pt or Ag) containing well-dispersed metal nanoparticles are constructed via the one-step thermal treatment of UiO-66 implanted with metal ions (UiO-66/Mn+, Mn+ = Pt2+ or Ag+). The comprehensive features of M@UiO-66s, such as well-dispersed nanocatalysts, well-developed pores, and characteristic surface charges, expedite not only efficient but also selective catalytic activities in the reduction of MB or 4-NP, along with impressive recyclability.

10.
Sci Rep ; 12(1): 14735, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042325

RESUMEN

The preparation of metal-organic frameworks (MOFs) having many open metal sites is an excellent approach for the development of highly active MOF-based catalysts. Herein, well-defined rice-shaped MOF-74 microparticles having structural defects are prepared by incorporating two analogous organic linkers [2,5-dihydroxy-1,4-bezenedicarboxylic acid (DHBDC) and 2-hydroxy-1,4-benzenedicarboxylic acid (HBDC)] within the MOF-74 structure. The replacement of some of DHBDC in MOF-74 by HBDC causes the structural defects (excluding some of the bridged hydroxyl groups), and these structural defects provide the additional open metal sites within MOF-74. Finally, the additional open metal sites within MOF-74 result in the enhanced catalytic activity for the cyanosilylation of several aldehydes. A series of MOF-74s is prepared with various incorporated amounts of HBDC, and the optimum ratio between DHBDC and HBDC in MOF-74 to achieving the best catalytic performance is determined. In addition, the defected MOF-74 displays an excellent recyclability for the catalytic reaction.

11.
ACS Nano ; 15(11): 17907-17916, 2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34734712

RESUMEN

Constructing metal-organic frameworks (MOFs) to have a desired structure from the given components is critical to achieve ideal MOFs with optimal properties. However, thermodynamics and/or kinetics typically impose a restriction on MOF structures. Here, we report the MOF farming concept to produce a naturally nonpreferred structure from the given components. The HKUST-1 template offers ideal places for the efficient seeding and epitaxial growth of Ga-MIL-88B that is a naturally nonpreferred structure however intentionally produced instead of the preferred Ga-MIL-68. The MOF growth on the differently shaped HKUST-1 templates (octahedral, cuboctahedral, and cubic), containing different exposed lattices, proves that a hexagonal lattice with an exposed {111} plane of HKUST-1 selectively directs the perpendicular growth of Ga-MIL-88B, owing to the lattice matching with the {001} plane of Ga-MIL-88B. The grown Ga-MIL-88B is isolated in a pure form, and the refreshed template is reused to grow additional Ga-MIL-88B.

12.
ACS Appl Mater Interfaces ; 12(16): 18625-18633, 2020 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-32237723

RESUMEN

Incorporation of metal nanocatalysts within a well-defined porous support is of great importance for stabilizing unstable metal nanocatalysts, so that they display an effective and long-lasting catalytic activity. In particular, metal-organic frameworks (MOFs) with a wide range of structures serve as excellent porous supports for stabilizing unstable nanocatalysts. In addition, the development of inexpensive metal nanocatalysts is necessary to replace expensive noble metal nanocatalysts. Herein, we report on a simple method for the preparation of porous MOF-based or carbon-based composites incorporated with catalytically active CoNi alloy nanoparticles. CoNi alloy nanoparticles were produced from the concurrent reduction of Co and Ni ions existing within a zeolitic imidazolate framework (ZIF)-based precursor material during the thermal treatment. In particular, a part of the highly porous ZIF was preserved during the thermal treatment at 400 °C, which eventually resulted in a composite of ZIF and CoNi (CoNi@ZIF). The resulting CoNi@ZIF showed excellent catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol. The synergy between the highly porous ZIF support and the well-dispersed CoNi nanoparticles within CoNi@ZIF provided an outstanding catalytic performance, even with inexpensive transition-metal nanocatalysts. Moreover, the catalytic activity of CoNi@ZIF was well conserved even after five consecutive reactions.

13.
J Am Chem Soc ; 142(6): 3042-3049, 2020 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-31968935

RESUMEN

Well-organized construction of hybrid metal-organic frameworks (MOFs) with complicated structures or components is a great importance because of their potential usefulness. In this regard, the conjugation of more than two MOFs, which have dissimilar components and/or structures, is a smart strategy for the production of hybrid MOFs. MOF-on-MOF growth is fundamental for the conjugation of two MOFs and should be deeply understood for the finely controlled conjugation and for the formation of well-organized hybrid MOFs. Herein, we report an interesting MOF growth process for the construction of hybrid MOF particles containing heterogeneous components and cell lattices. Interestingly, even though a newly grown MOF and an MOF template have mismatched cell lattices, the anisotropic growth results in unexpectedly well-defined core-shell-type hybrid MOFs. Comprehensive monitoring of the growth process revealed a tip-to-middle MOF-on-MOF growth, which elucidates the uncommon formation of a well-defined core-shell hybrid despite the anisotropic growth. A tip-to-middle anisotropic growth process is accompanied by self-adjustment of MOF cell lattices to anchor on the template surface having mismatched cell lattices in the early reaction stage and self-reversion of cell lattices to the original comfortable configuration in the middle stage of the reaction.

14.
Angew Chem Int Ed Engl ; 59(3): 1327-1333, 2020 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-31674087

RESUMEN

The structural, compositional, and morphological features of metal-organic frameworks (MOFs) govern their properties and applications. Construction of hybrid MOFs with complicated structures, components, or morphologies is significant for the development of well-organized MOFs. An advanced route is reported for construction of atypical hybrid MOFs with unique morphologies and complicated components: 1) MOF-on-MOF growth of a 3D zeolitic imidazolate framework (ZIF) on a ZIF-L template, 2) etching of a part of the 2D ZIF-L template, and 3) structural transformation of 2D ZIF-L into 3D ZIF. The formation of core-shell-type MOF rings and plates is controlled by regulating the three processes. The formation route for the core-shell-type MOF rings and plates was monitored by tracking changes in morphology, structure, and composition. Carbon materials prepared from the pyrolysis of the core-shell-type hybrid MOFs displayed enhanced oxygen reduction reaction activities compared to their monomeric counterparts.

15.
IUCrJ ; 6(Pt 4): 681-687, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316811

RESUMEN

The structural dimension of metal-organic frameworks (MOFs) is of great importance in defining their properties and thus applications. In particular, 2D layered MOFs are of considerable interest because of their useful applications, which are facilitated by unique structural features of 2D materials, such as a large number of open active sites and high surface areas. Herein, this work demonstrates a methodology for the selective synthesis of a 2D layered MOF in the presence of the competitive formation of a 3D MOF. The ratio of the reactants, metal ions and organic building blocks used during the reaction is found to be critical for the selective formation of a 2D MOF, and is associated with its chemical composition. In addition, the well defined and uniform micro-sized 2D MOF particles are successfully synthesized in the presence of an ultrasonic dispersion. Moreover, the laminated 2D MOF layers are directly synthesized via a modified bottom-up lamination method, a combination of chemical and physical stimuli, in the presence of surfactant and ultrasonication.

16.
Small ; 15(17): e1805232, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30932335

RESUMEN

The development of new electrocatalysts for electrochemical oxygen reduction to replace expensive and rare platinum-based catalysts is an important issue in energy storage and conversion research. In this context, conductive and porous metal-organic frameworks (MOFs) are considered promising materials for the oxygen reduction reaction (ORR) due to not only their high surface area and well-developed pores but also versatile structural features and chemical compositions. Herein, the preparation of bimetallic conductive 2D MOFs (Cox Niy -CATs) are reported for use as catalysts in the ORR. The ratio of the two metal ions (Co2+ and Ni2+ ) in the bimetallic Cox Niy -CATs is rationally controlled to determine the optimal composition of Cox Niy -CAT for efficient performance in the ORR. Indeed, bimetallic MOFs display enhanced ORR activity compared to their monometallic counterparts (Co-CAT or Ni-CAT). During the ORR, bimetallic Cox Niy -CATs retain an advantageous characteristic of Co-CAT in relation to its high diffusion-limiting current density, as well as a key advantage of Ni-CAT in relation to its high onset potential. Moreover, the ORR-active bimetallic Cox Niy -CAT with excellent ORR activity is prepared at a large scale via a convenient method using a ball-mill reactor.

17.
Angew Chem Int Ed Engl ; 58(3): 866-871, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30488665

RESUMEN

A convenient method for the confined incorporation of highly active bimetallic PdCo nanocatalysts within a hollow and porous metal-organic framework (MOF) support is presented. Several chemical conversions occur simultaneously during the one-step low temperature pyrolysis of well-designed polystyrene@ZIF-67/Pd2+ core-shell microspheres, where ZIF (zeolitic imidazolate framework) is a subclass of MOF: the polystyrene core is removed, resulting in a beneficial hollow and porous ZIF support; the ZIF-67 shell acts as a well-defined porous support and as a felicitous Co2+ supplier for metal nanoparticle formation; and Pd2+ and Co2+ are reduced to form catalytically active bimetallic PdCo nanoparticles in the well-defined micropores, inducing the confined growth of PdCo nanoparticles with excellent dispersity.

18.
Chem Commun (Camb) ; 55(1): 43-46, 2018 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-30488915

RESUMEN

The unbalanced MOF-on-MOF growth of MIL-88A on the MIL-88B template, where both MOFs have a similar three-dimensional hexagonal structure but with mismatched cell parameters, results in the formation of an atypical lopsided core-shell of MIL-88B@MIL-88A with an off-centered core. The formation mechanism of the lopsided core-shell of MIL-88B@MIL-88A is verified via monitoring the growth process.

19.
Inorg Chem ; 57(15): 9048-9054, 2018 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-30044605

RESUMEN

Porous metal-organic frameworks (MOFs) are interesting materials owing to their interesting structural features and their many useful properties and applications. In particular, the structural features are greatly important to optimize the MOFs' porosities and so properties. Indeed, the MOFs' well-developed micropore and high surface area are the most important structural features, and as such, many practical applications of MOFs originate from these structural features. We herein demonstrate a strategy for improving the crystallinity of MOFs, and so increasing the porosity and surface area of poorly crystalline MOFs by making them in core-shell-type hybrids through the induced growth on the well-crystalline template. Although poorly crystalline versions of MOFs generate naturally in the absence of the well-crystalline template, well-crystalline versions of MOFs produce inductively in the presence of the well-crystalline template. In addition, the crystallinity enhancement of MOFs brings together the improvement in their porosities and surface areas. The surface areas and pore volumes of the well-crystalline versions of MOFs produced through the induced growth on the template are calculated based on this study, indicating that MOF surface areas increase by up to 7 times compared to the poorly crystalline versions.

20.
Nanoscale ; 9(35): 12850-12854, 2017 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-28849833

RESUMEN

The conjugation of metal-organic frameworks (MOFs) with other materials is an excellent strategy for the production of advanced materials having desired properties and so appropriate applicability. In particular, the integration of MOFs with a flexible paper is expected to form valuable materials in separation technology. Here we report a simple method for the generation of MOF papers through the compact and uniform growth of MOF nanoparticles on the cellulose surface of a carboxymethylated filter paper. The resulting MOF papers show a selective capture ability for negatively charged organic dyes and they can be used for dye separation through simple filtration of a dye solution on the MOF papers. In addition, MOF papers can be reused after a simple washing process without losing their effective dye capture ability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA