Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Cell Stem Cell ; 30(12): 1585-1596.e6, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38065067

RESUMEN

Transplantation of induced pluripotent stem cell (iPSC)-derived retinal organoids into retinal disease animal models has yielded promising results, and several clinical trials on iPSC-derived retinal pigment epithelial cell transplantation have confirmed its safety. In this study, we performed allogeneic iPSC-derived retinal organoid sheet transplantation in two subjects with advanced retinitis pigmentosa (jRCTa050200027). The primary endpoint was the survival and safety of the transplanted retinal organoid sheets in the first year post-transplantation. The secondary endpoints were the safety of the transplantation procedure and visual function evaluation. The grafts survived in a stable condition for 2 years, and the retinal thickness increased at the transplant site without serious adverse events in both subjects. Changes in visual function were less progressive than those of the untreated eye during the follow-up. Allogeneic iPSC-derived retinal organoid sheet transplantation is a potential therapeutic approach, and the treatment's safety and efficacy for visual function should be investigated further.


Asunto(s)
Células Madre Pluripotentes Inducidas , Retinitis Pigmentosa , Animales , Humanos , Retina , Retinitis Pigmentosa/terapia , Visión Ocular , Organoides
2.
Commun Biol ; 6(1): 164, 2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36765170

RESUMEN

Three-dimensional retinal organoids (3D-retinas) are a promising graft source for transplantation therapy. We previously developed self-organizing culture for 3D-retina generation from human pluripotent stem cells (hPSCs). Here we present a quality control method and preclinical studies for tissue-sheet transplantation. Self-organizing hPSCs differentiated into both retinal and off-target tissues. Gene expression analyses identified the major off-target tissues as eye-related, cortex-like, and spinal cord-like tissues. For quality control, we developed a qPCR-based test in which each hPSC-derived neuroepithelium was dissected into two tissue-sheets: inner-central sheet for transplantation and outer-peripheral sheet for qPCR to ensure retinal tissue selection. During qPCR, tissue-sheets were stored for 3-4 days using a newly developed preservation method. In a rat tumorigenicity study, no transplant-related adverse events were observed. In retinal degeneration model rats, retinal transplants differentiated into mature photoreceptors and exhibited light responses in electrophysiology assays. These results demonstrate our rationale toward self-organizing retinal sheet transplantation therapy.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Degeneración Retiniana , Humanos , Ratas , Animales , Retina/metabolismo , Degeneración Retiniana/terapia , Degeneración Retiniana/metabolismo , Células Fotorreceptoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA