Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Toxicol Sci ; 49(3): 95-103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38432956

RESUMEN

This study was conducted as part of an investigation into the cause of vesnarinone-associated agranulocytosis. When HL-60 cells were exposed to vesnarinone for 48 hr, little cytotoxicity was observed, although reduced glutathione (GSH) content decreased in a concentration-dependent manner. Significant cytotoxicity and reactive oxygen species (ROS) production were observed when intracellular GSH content was reduced by treatment with L-buthionine-(S, R)-sulphoximine. The involvement of myeloperoxidase (MPO) metabolism was suggested, as when HL-60 cells were exposed to a reaction mixture of vesnarinone-MPO/H2O2/Cl-, cytotoxicity was also observed. In contrast, the presence of GSH (1 mM) protected against these cytotoxic effects. Liquid chromatography-mass spectrometry analysis of the MPO/H2O2/Cl- reaction mixture revealed that vesnarinone was converted into two metabolites, (4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 1: M1] and 1-chloro-4-(3,4-dimethoxybenzoyl)piperazine [Metabolite 2: M2]). M2 was identified as the N-chloramine form, a reactive metabolite of M1. Interestingly, M2 was converted to M1, which was accompanied by the conversion of GSH to oxidized GSH (GSSG). Furthermore, when HL-60 cells were exposed to synthetic M1 and M2 for 24 hr, M2 caused dose-dependent cytotoxicity, whereas M1 did not. Cells were protected from M2-derived cytotoxicity by the presence of GSH. In conclusion, we present the first demonstration of the cytotoxic effects and ROS production resulting from the MPO/H2O2/Cl- metabolic reaction of vesnarinone and newly identified the causative metabolite, M2, as the N-chloramine metabolite of M1, which induces cytotoxicity in HL-60 cells. Moreover, a protective role of GSH against the cytotoxicity was revealed. These findings suggest a possible nonimmunological cause of vesnarinone agranulocytosis.


Asunto(s)
Agranulocitosis , Antineoplásicos , Pirazinas , Quinolinas , Humanos , Cloraminas , Glutatión , Células HL-60 , Peróxido de Hidrógeno/toxicidad , Especies Reactivas de Oxígeno , Agranulocitosis/inducido químicamente , Cloruros , Piperazinas
2.
J Mol Microbiol Biotechnol ; 21(3-4): 160-72, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22286043

RESUMEN

Lactococcus strain 20-92 is a bacterium that produces equol directly from daidzein under anaerobic conditions. In this study, we reveal that the transcription of the gene encoding daidzein reductase in Lactococcus strain 20-92 (L-DZNR), which is responsible for the first stage of the biosynthesis of equol from daidzein, is regulated by the presence of daidzein. We analyzed the sequence surrounding the L-DZNR gene and found six novel genes, termed orf-US4, orf-US3, orf-US2, orf-US1, orf-DS1 and orf-DS2. These genes were expressed in Escherichia coli, and the resulting gene products were assayed for dihydrodaidzein reductase (DHDR) and tetrahydrodaidzein reductase (THDR) activity. The results showed that orf-US2 and orf-US3 encoded DHDR and THDR, respectively. DHDR in Lactococcus strain 20-92 (L-DHDR) was similar to the 3-oxoacyl-acyl-carrier-protein reductases of several bacteria and belonged to the short chain dehydrogenase/reductase family. THDR in Lactococcus strain 20-92 (L-THDR) was similar to several putative fumarate reductase/succinate dehydrogenase flavoprotein domain proteins. L-DHDR required NAD(P)H for its activity, whereas L-THDR required neither NADPH nor NADH. Thus, we succeeded in identifying two novel enzymes that are related to the second and third stages of the biosynthetic pathway that converts daidzein to equol.


Asunto(s)
Equol/biosíntesis , Isoflavonas/metabolismo , Lactococcus/enzimología , Lactococcus/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Vías Biosintéticas/genética , Clonación Molecular , Coenzimas/metabolismo , Escherichia coli/genética , Expresión Génica , Genes Bacterianos , Lactococcus/genética , Datos de Secuencia Molecular , NADP/metabolismo , Oxidación-Reducción , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA