Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 979
Filtrar
2.
Proc Natl Acad Sci U S A ; 121(37): e2401531121, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39226364

RESUMEN

Many RNA-binding proteins (RBPs) are linked to the dysregulation of RNA metabolism in motor neuron diseases (MNDs). However, the molecular mechanisms underlying MN vulnerability have yet to be elucidated. Here, we found that such an RBP, Quaking5 (Qki5), contributes to formation of the MN-specific transcriptome profile, termed "MN-ness," through the posttranscriptional network and maintenance of the mature MNs. Immunohistochemical analysis and single-cell RNA sequencing (scRNA-seq) revealed that Qki5 is predominantly expressed in MNs, but not in other neuronal populations of the spinal cord. Furthermore, comprehensive RNA sequencing (RNA-seq) analyses revealed that Qki5-dependent RNA regulation plays a pivotal role in generating the MN-specific transcriptome through pre-messenger ribonucleic acid (mRNA) splicing for the synapse-related molecules and c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK) signaling pathways. Indeed, MN-specific ablation of the Qki5 caused neurodegeneration in postnatal mice and loss of Qki5 function resulted in the aberrant activation of stress-responsive JNK/SAPK pathway both in vitro and in vivo. These data suggested that Qki5 plays a crucial biological role in RNA regulation and safeguarding of MNs and might be associated with pathogenesis of MNDs.


Asunto(s)
Neuronas Motoras , Proteínas de Unión al ARN , Médula Espinal , Transcriptoma , Animales , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Neuronas Motoras/metabolismo , Ratones , Médula Espinal/metabolismo , Precursores del ARN/metabolismo , Precursores del ARN/genética , Empalme del ARN , Ratones Noqueados
3.
Neuroimage ; 300: 120854, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39278381

RESUMEN

The common marmoset is an essential model for understanding social cognition and neurodegenerative diseases. This study explored the structural and functional brain connectivity in a marmoset under isoflurane anesthesia, aiming to statistically overcome the effects of high inter-individual variability and noise-related confounds such as physiological noise, ensuring robust and reliable data. Similarities and differences in individual subject data, including assessments of functional and structural brain connectivities derived from resting-state functional MRI and diffusion tensor imaging were meticulously captured. The findings highlighted the high consistency of structural neural connections within the species, indicating a stable neural architecture, while functional connectivity under anesthesia displayed considerable variability. Through independent component and dual regression analyses, several distinct brain connectivities were identified, elucidating their characteristics under anesthesia. Insights into the structural and functional features of the marmoset brain from this study affirm its value as a neuroscience research model, promising advancements in the field through fundamental and translational studies.


Asunto(s)
Anestésicos por Inhalación , Encéfalo , Callithrix , Imagen de Difusión Tensora , Isoflurano , Imagen por Resonancia Magnética , Animales , Isoflurano/farmacología , Anestésicos por Inhalación/farmacología , Imagen de Difusión Tensora/métodos , Imagen por Resonancia Magnética/métodos , Encéfalo/efectos de los fármacos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Masculino , Conectoma/métodos , Femenino , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Red Nerviosa/efectos de los fármacos , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología
4.
Brain ; 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39312484

RESUMEN

Advanced pathological and genetic approaches have revealed that mutations in fused in sarcoma/translated in liposarcoma (FUS/TLS), which is pivotal for DNA repair, alternative splicing, translation and RNA transport, cause familial amyotrophic lateral sclerosis (ALS). The generation of suitable animal models for ALS is essential for understanding its pathogenesis and developing therapies. Therefore, we used CRISPR-Cas9 to generate FUS-ALS mutation in the non-classical nuclear localization signal (NLS), H517D (mouse position: H509D) and genome-edited mice. Fus WT/H509D mice showed progressive motor impairment (accelerating rotarod and DigiGait system) with age, which was associated with the loss of motor neurons and disruption of the nuclear lamina and nucleoporins and DNA damage in spinal cord motor neurons. We confirmed the validity of our model by showing that nuclear lamina and nucleoporin disruption were observed in lower motor neurons differentiated from patient-derived human induced pluripotent stem cells (hiPSC-LMNs) with FUS-H517D and in the post-mortem spinal cord of patients with ALS. RNA sequence analysis revealed that most nuclear lamina and nucleoporin-linking genes were significantly decreased in FUS-H517D hiPSC-LMNs. This evidence suggests that disruption of the nuclear lamina and nucleoporins is crucial for ALS pathomechanisms. Combined with patient-derived hiPSC-LMNs and autopsy samples, this mouse model might provide a more reliable understanding of ALS pathogenesis and might aid in the development of therapeutic strategies.

5.
J Neurosci ; 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39299799

RESUMEN

Estimating the direction of functional connectivity (FC) can help to further elucidate complex brain function. However, the estimation of directed FC at the voxel level in fMRI data, and evaluating its performance, has yet to be done. We therefore developed a novel directed seed-based connectivity analysis (SCA) method based on normalized pairwise Granger causality that provides greater detail and accuracy over ROI-based methods. We evaluated its performance against 145 cortical retrograde tracer injections in male and female marmosets that were used as ground truth cellular connectivity on a voxel-by-voxel basis. The ROC curve was calculated for each injection, and we achieved AUC (Area Under the ROC Curve) of 0.95 for undirected and 0.942 for directed SCA in the case of high cell count threshold. This indicates that SCA can reliably estimate the strong cellular connections between voxels in fMRI data. We then used our directed SCA method to analyze the human default mode network (DMN) and found that dlPFC (dorsolateral prefrontal cortex) and temporal lobe were separated from other DMN regions, forming part of the language-network that works together with the core DMN regions. We also found that the cerebellum (Crus I & II) was strongly targeted by the posterior parietal cortices and dlPFC, but reciprocal connections were not observed. Thus, the cerebellum may not be a part of, but instead a target of, the DMN and language-network. Summarily, our novel directed SCA method, visualized with a new functional flat mapping technique, opens a new paradigm for whole-brain functional analysis.Significant Statement We developed a novel directed seed-based connectivity analysis (SCA) method. To evaluate its performance, we used 145 retrograde tracer injections into the common marmoset left cortex as ground truth cellular connectivity. These were compared with directed and undirected SCA on a voxel-by-voxel basis. We achieved AUC=0.95 for undirected and AUC=0.942 for directed SCA, thus SCA can estimate strong cellular connections with high accuracy. Then, we analysed the human default mode network (DMN) with directed SCA and found that the dorsolateral prefrontal cortex and temporal lobe were not part of the DMN, but part of the language network. Secondly, our analysis showed that the cerebellum may not be part of, but instead a target of, the DMN and language network.

6.
Front Cell Dev Biol ; 12: 1357204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211392

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a major neurodegenerative disease for which there is currently no curative treatment. The blood-brain barrier (BBB), multiple physiological functions formed by mainly specialized brain microvascular endothelial cells (BMECs), serves as a gatekeeper to protect the central nervous system (CNS) from harmful molecules in the blood and aberrant immune cell infiltration. The accumulation of evidence indicating that alterations in the peripheral milieu can contribute to neurodegeneration within the CNS suggests that the BBB may be a previously overlooked factor in the pathogenesis of ALS. Animal models suggest BBB breakdown may precede neurodegeneration and link BBB alteration to the disease progression or even onset. However, the lack of a useful patient-derived model hampers understanding the pathomechanisms of BBB dysfunction and the development of BBB-targeted therapies. In this study, we differentiated BMEC-like cells from human induced pluripotent stem cells (hiPSCs) derived from ALS patients to investigate BMEC functions in ALS patients. TARDBP N345K/+ carrying patient-derived BMEC-like cells exhibited increased permeability to small molecules due to loss of tight junction in the absence of neurodegeneration or neuroinflammation, highlighting that BMEC abnormalities in ALS are not merely secondary consequences of disease progression. Furthermore, they exhibited increased expression of cell surface adhesion molecules like ICAM-1 and VCAM-1, leading to enhanced immune cell adhesion. BMEC-like cells derived from hiPSCs with other types of TARDBP gene mutations (TARDBP K263E/K263E and TARDBP G295S/G295S) introduced by genome editing technology did not show such BMEC dysfunction compared to the isogenic control. Interestingly, transactive response DNA-binding protein 43 (TDP-43) was mislocalized to cytoplasm in TARDBP N345K/+ carrying model. Wnt/ß-catenin signaling was downregulated in the ALS patient (TARDBP N345K/+)-derived BMEC-like cells and its activation rescued the leaky barrier phenotype and settled down VCAM-1 expressions. These results indicate that TARDBP N345K/+ carrying model recapitulated BMEC abnormalities reported in brain samples of ALS patients. This novel patient-derived BMEC-like cell is useful for the further analysis of the involvement of vascular barrier dysfunctions in the pathogenesis of ALS and for promoting therapeutic drug discovery targeting BMEC.

7.
Inflamm Regen ; 44(1): 32, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997748

RESUMEN

BACKGROUND: Extracellular vesicles (EVs) hold the potential for elucidating the pathogenesis of amyotrophic lateral sclerosis (ALS) and serve as biomarkers. Notably, the comparative and longitudinal alterations in the protein profiles of EVs in serum (sEVs) and cerebrospinal fluid (CSF; cEVs) of sporadic ALS (SALS) patients remain uncharted. Ropinirole hydrochloride (ROPI; dopamine D2 receptor [D2R] agonist), a new anti-ALS drug candidate identified through induced pluripotent stem cell (iPSC)-based drug discovery, has been suggested to inhibit ALS disease progression in the Ropinirole Hydrochloride Remedy for Amyotrophic Lateral Sclerosis (ROPALS) trial, but its mechanism of action is not well understood. Therefore, we tried to reveal longitudinal changes with disease progression and the effects of ROPI on protein profiles of EVs. METHODS: We collected serum and CSF at fixed intervals from ten controls and from 20 SALS patients participating in the ROPALS trial. Comprehensive proteomic analysis of EVs, extracted from these samples, was conducted using liquid chromatography/mass spectrometer (LC/MS). Furthermore, we generated iPSC-derived astrocytes (iPasts) and performed RNA sequencing on astrocytes with or without ROPI treatment. RESULTS: The findings revealed notable disparities yet high congruity in sEVs and cEVs protein profiles concerning disease status, time and ROPI administration. In SALS, both sEVs and cEVs presented elevated levels of inflammation-related proteins but reduced levels associated with unfolded protein response (UPR). These results mirrored the longitudinal changes after disease onset and correlated with the revised ALS Functional Rating Scale (ALSFRS-R) at sampling time, suggesting a link to the onset and progression of SALS. ROPI appeared to counteract these changes, attenuating inflammation-related protein levels and boosting those tied to UPR in SALS, proposing an anti-ALS impact on EV protein profiles. Reverse translational research using iPasts indicated that these changes may partly reflect the DRD2-dependent neuroinflammatory inhibitory effects of ROPI. We have also identified biomarkers that predict diagnosis and disease progression by machine learning-driven biomarker search. CONCLUSIONS: Despite the limited sample size, this study pioneers in reporting time-series proteomic alterations in serum and CSF EVs from SALS patients, offering comprehensive insights into SALS pathogenesis, ROPI-induced changes, and potential prognostic and diagnostic biomarkers.

8.
Stem Cell Res ; 79: 103489, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39002249

RESUMEN

Disease-related cells differentiated from patient-derived iPSCs are useful for elucidating the pathophysiological mechanisms underlying these diseases. In this study, four iPSC lines were established from independent patients with sensorineural hearing loss and a mutation in EYA4. These iPSCs showed pluripotency, the capacity to differentiate into three germ layers, and normal karyotypes, suggesting that these lines are useful for the pathological study of sensorineural hearing loss and drug screening for ear disorders.


Asunto(s)
Pérdida Auditiva Sensorineural , Células Madre Pluripotentes Inducidas , Mutación , Humanos , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Línea Celular , Femenino , Transactivadores/genética , Diferenciación Celular , Niño , Cariotipo
9.
Stem Cell Res ; 78: 103452, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815527

RESUMEN

We report the establishment of a human induced pluripotent stem cell (iPSC) line from a 54-year-old male patient with an A1555G mutation in the mitochondrial 12S ribosomal RNA gene (MTRNR1), associated with sensorineural hearing loss. The established iPSC line expressed stemness markers or undifferentiated state markers. We also demonstrated the capacity of the cells to differentiate into the three germ layers, suggesting its pluripotency and utility in the pathological study of sensorineural hearing loss and drug screening for ear disorders.


Asunto(s)
ADN Mitocondrial , Células Madre Pluripotentes Inducidas , Mutación , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ADN Mitocondrial/genética , Masculino , Persona de Mediana Edad , Diferenciación Celular , Línea Celular , ARN Ribosómico/genética , Pérdida Auditiva Sensorineural/genética , Pérdida Auditiva Sensorineural/patología , Pérdida Auditiva/genética , Pérdida Auditiva/patología
10.
Expert Opin Investig Drugs ; 33(7): 713-720, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38783527

RESUMEN

INTRODUCTION: Spinal cord injury (SCI) is a condition in which the spinal cord parenchyma is damaged by various factors. The mammalian central nervous system has been considered unable to regenerate once damaged, but recent progress in basic research has gradually revealed that injured neural cells can indeed regenerate. Drug therapy using novel agents is being actively investigated as a new treatment for SCI. One notable treatment method is regeneration therapy using hepatocyte growth factors (HGF). AREA COVERED: HGF has pluripotent neuroregenerative actions, as indicated by its neuroprotective and regenerative effects on the microenvironment and damaged cells, respectively. This review examines these effects in various phases of SCI, from basic research to clinical studies, and the application of this treatment to other diseases. EXPERT OPINION: In regenerative medicine for SCI, drug therapies have tended to be more likely to be developed compared to cell replacement treatment. Nevertheless, there are still challenges to be addressed for these clinical applications due to a wide variety of pathology and animal experimental models of basic study, but HGF could be an effective treatment for SCI with expanded application.


Asunto(s)
Factor de Crecimiento de Hepatocito , Fármacos Neuroprotectores , Medicina Regenerativa , Traumatismos de la Médula Espinal , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/fisiopatología , Factor de Crecimiento de Hepatocito/farmacología , Factor de Crecimiento de Hepatocito/metabolismo , Animales , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Medicina Regenerativa/métodos , Modelos Animales de Enfermedad , Regeneración Nerviosa/efectos de los fármacos , Desarrollo de Medicamentos
11.
Acta Neuropathol ; 147(1): 84, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750212

RESUMEN

Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Astrocitos , Proteínas de Unión al ADN , Proteínas Mitocondriales , Factores de Transcripción , Femenino , Humanos , Masculino , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Astrocitos/patología , Astrocitos/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Mitocondrias/patología , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38649269

RESUMEN

Genetic variants in the apolipoprotein E (APOE) gene affect the onset and progression of Alzheimer's disease (AD). The APOE Christchurch (APOE Ch) variant has been identified as the most prominent candidate for preventing the onset and progression of AD. In this study, we generated isogenic APOE3Ch/3Ch human-induced pluripotent stem cells (iPSCs) from APOE3/3 healthy control female iPSCs and induced them into astrocytes. RNA expression analysis revealed the inherent resilience of APOE3Ch/3Ch astrocytes to induce a reactive state in response to inflammatory cytokines. Moreover, cytokine treatment changed astrocytic morphology with more complexity in APOE3/3 astrocytes, but not in APOE3Ch/3Ch astrocytes, indicating resilience of the rare variant to a reactive state. Interestingly, we observed robust morphological alterations containing more intricate processes when cocultured with iPSC-derived cortical neurons, in which APOE3Ch/3Ch astrocytes reduced complexity compared with APOE3/3 astrocytes. To assess the impacts of tau propagation effects, we next developed a sophisticated and sensitive assay utilizing cortical neurons derived from human iPSCs, previously generated from donors of both sexes. We showed that APOE3Ch/3Ch astrocytes effectively mitigated tau propagation within iPSC-derived neurons. This study provides important experimental evidence of the characteristic functions exhibited by APOE3Ch/3Ch astrocytes, thereby offering valuable insights for the advancement of novel clinical interventions in AD research.


Asunto(s)
Astrocitos , Células Madre Pluripotentes Inducidas , Proteínas tau , Astrocitos/metabolismo , Humanos , Proteínas tau/metabolismo , Proteínas tau/genética , Femenino , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Apolipoproteína E3/genética , Neuronas/metabolismo , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Células Cultivadas , Técnicas de Cocultivo
13.
Neurosci Res ; 206: 20-29, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38636670

RESUMEN

The field of aging biology, which aims to extend healthy lifespans and prevent age-related diseases, has turned its focus to the Callithrix jacchus (common marmoset) to understand the aging process better. This study utilized magnetic resonance imaging (MRI) to non-invasively analyze the brains of 216 marmosets, investigating age-related changes in brain structure; the relationship between body weight and brain volume; and potential differences between males and females. The key findings revealed that, similar to humans, Callithrix jacchus experiences a reduction in total intracranial volume, cortex, subcortex, thalamus, and cingulate volumes as they age, highlighting site-dependent changes in brain tissue. Notably, the study also uncovered sex differences in cerebellar volume. These insights into the structural connectivity and volumetric changes in the marmoset brain throughout aging contribute to accumulating valuable knowledge in the field, promising to inform future aging research and interventions for enhancing healthspan.


Asunto(s)
Envejecimiento , Encéfalo , Callithrix , Imagen por Resonancia Magnética , Caracteres Sexuales , Animales , Callithrix/anatomía & histología , Imagen por Resonancia Magnética/métodos , Envejecimiento/fisiología , Femenino , Masculino , Encéfalo/diagnóstico por imagen , Encéfalo/anatomía & histología , Tamaño de los Órganos/fisiología
14.
Sci Rep ; 14(1): 8316, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594386

RESUMEN

Animal models of brain function are critical for the study of human diseases and development of effective interventions. Resting-state network (RSN) analysis is a powerful tool for evaluating brain function and performing comparisons across animal species. Several studies have reported RSNs in the common marmoset (Callithrix jacchus; marmoset), a non-human primate. However, it is necessary to identify RSNs and evaluate commonality and inter-individual variance through analyses using a larger amount of data. In this study, we present marmoset RSNs detected using > 100,000 time-course image volumes of resting-state functional magnetic resonance imaging data with careful preprocessing. In addition, we extracted brain regions involved in the composition of these RSNs to understand the differences between humans and marmosets. We detected 16 RSNs in major marmosets, three of which were novel networks that have not been previously reported in marmosets. Since these RSNs possess the potential for use in the functional evaluation of neurodegenerative diseases, the data in this study will significantly contribute to the understanding of the functional effects of neurodegenerative diseases.


Asunto(s)
Callithrix , Enfermedades Neurodegenerativas , Animales , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos
15.
Commun Biol ; 7(1): 413, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594382

RESUMEN

Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.


Asunto(s)
Células Madre Pluripotentes Inducidas , Ataxias Espinocerebelosas , Animales , Humanos , Ratones , Citocinas , Células Madre Pluripotentes Inducidas/patología , Ratones Transgénicos , Células de Purkinje/fisiología , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología , Ubiquitinas
16.
Cells ; 13(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38667286

RESUMEN

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Asunto(s)
Diferenciación Celular , Células Madre Pluripotentes Inducidas , Accidente Cerebrovascular Isquémico , Células-Madre Neurales , Sinapsis , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Humanos , Animales , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Células-Madre Neurales/citología , Accidente Cerebrovascular Isquémico/patología , Accidente Cerebrovascular Isquémico/terapia , Ratas , Sinapsis/metabolismo , Masculino , Neuritas/metabolismo , Encéfalo/patología , Isquemia Encefálica/terapia , Isquemia Encefálica/patología , Neuronas/metabolismo , Neuronas/patología , Ratas Sprague-Dawley , Accidente Cerebrovascular/terapia , Accidente Cerebrovascular/patología
17.
Nat Commun ; 15(1): 2496, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548776

RESUMEN

Postsynaptic proteins play crucial roles in synaptic function and plasticity. During brain development, alterations in synaptic number, shape, and stability occur, known as synapse maturation. However, the postsynaptic protein composition changes during development are not fully understood. Here, we show the trajectory of the postsynaptic proteome in developing male mice and common marmosets. Proteomic analysis of mice at 2, 3, 6, and 12 weeks of age shows that proteins involved in synaptogenesis are differentially expressed during this period. Analysis of published transcriptome datasets shows that the changes in postsynaptic protein composition in the mouse brain after 2 weeks of age correlate with gene expression changes. Proteomic analysis of marmosets at 0, 2, 3, 6, and 24 months of age show that the changes in the marmoset brain can be categorized into two parts: the first 2 months and after that. The changes observed in the first 2 months are similar to those in the mouse brain between 2 and 12 weeks of age. The changes observed in marmoset after 2 months old include differential expression of synaptogenesis-related molecules, which hardly overlap with that in mice. Our results provide a comprehensive proteomic resource that underlies developmental synapse maturation in rodents and primates.


Asunto(s)
Fenómenos Biológicos , Callithrix , Animales , Ratones , Masculino , Proteoma/metabolismo , Proteómica , Sinapsis/metabolismo
18.
Heliyon ; 10(4): e26391, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38434080

RESUMEN

In diffusion magnetic resonance imaging, oscillating gradient spin echo (OGSE) has an extremely short diffusion time if motion probing gradient (MPG) is applied to the waveform. Further, it can detect microstructural specificity. OGSE changes sensitivity to spin displacement velocity based on the MPG phase. The current study aimed to investigate the restricted diffusion characteristics of each OGSE waveform using the capillary phantom with various b-values, frequencies, and MPG phases. We performed OGSE (b-value = 300, 500, 800, 1200, 1600, and 2000 s/mm2) for the sine and cosine waveforms using the capillary phantom (6, 12, 25, 50, and 100 µm and free water) with a 9.4-T experimental magnetic resonance imaging system and a solenoid coil. We evaluated the axial and radial diffusivity (AD, RD) of each structure size. The output current of the MPG was assessed with an oscilloscope and analyzed with the gradient modulation power spectra by fast Fourier transform. In sine, the sidelobe spectrum was enhanced with increasing frequency, and the central spectrum slightly increased. The difference in RD was detected at 6 and 12 µm; however, it did not depend on the structure scale at 50 or 100 µm and free water. In cosine, the diffusion spectrum was enhanced, whereas the central spectrum decreased with increasing frequency. Both AD and RD in cosine had a frequency dependence, and AD and RD increased with a higher frequency regardless of structure size. AD and RD in either sine or cosine had no evident b-value dependence. We evaluated the OGSE-restricted diffusion characteristics. The measurements obtained diffusion information similar to the pulsed gradient spin echo. Hence, the cosine measurements indicated that a higher frequency could capture faster diffusion within the diffusion phenomena.

19.
Cells ; 13(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474376

RESUMEN

There is no choice other than rehabilitation as a practical medical treatment to restore impairments or improve activities after acute treatment in people with spinal cord injury (SCI); however, the effect is unremarkable. Therefore, researchers have been seeking effective pharmacological treatments. These will, hopefully, exert a greater effect when combined with rehabilitation. However, no review has specifically summarized the combinatorial effects of rehabilitation with various medical agents. In the current review, which included 43 articles, we summarized the combinatorial effects according to the properties of the medical agents, namely neuromodulation, neurotrophic factors, counteraction to inhibitory factors, and others. The recovery processes promoted by rehabilitation include the regeneration of tracts, neuroprotection, scar tissue reorganization, plasticity of spinal circuits, microenvironmental change in the spinal cord, and enforcement of the musculoskeletal system, which are additive, complementary, or even synergistic with medication in many cases. However, there are some cases that lack interaction or even demonstrate competition between medication and rehabilitation. A large fraction of the combinatorial mechanisms remains to be elucidated, and very few studies have investigated complex combinations of these agents or targeted chronically injured spinal cords.


Asunto(s)
Medicina , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/terapia , Neuroprotección
20.
Inflamm Regen ; 44(1): 10, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38475915

RESUMEN

Inflammatory responses are known to suppress neural regeneration in patients receiving stem cell-based regenerative therapy for spinal cord injury (SCI). Consequently, pathways involved in neurogenesis and immunomodulation, such as the hepatocyte growth factor (HGF)/MET signaling cascade, have garnered significant attention. Notably, various studies, including our own, have highlighted the enhanced recovery of locomotor functions achieved in SCI animal models by combining HGF pretreatment and human induced stem cell-derived neural stem/progenitor cell (hiPSC-NS/PC) transplantation. However, these studies implicitly hypothesized that the functionality of HGF in SCI would be time consistent and did not elucidate its dynamics. In the present article, we investigated the time-course of the effect of HGF on SCI, aiming to uncover a more precise mechanism for HGF administration, which is indispensable for developing crystallizing protocols for combination therapy. To this end, we performed a detailed investigation of the temporal variation of HGF using the RNA-seq data we obtained in our most recent study. Leveraging the time-series design of the data, which we did not fully exploit previously, we identified three components in the effects of HGF that operate at different times: early effects, continuous effects, and delayed effects. Our findings suggested a concept where the three components together contribute to the acceleration of neurogenesis and immunomodulation, which reinforce the legitimacy of empirically fine-tuned protocols for HGF administration and advocate the novel possibility that the time-inconsistent effects of HGF progressively augment the efficacy of combined therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA