RESUMEN
Familial hypobetalipoproteinemia (FHBL) 1 is a rare genetic disorder with an autosomal codominant mode of inheritance and is caused by defects in the apolipoprotein (apo) B (APOB) gene that disable lipoprotein formation. ApoB proteins are required for the formation of very low-density lipoproteins (VLDLs), chylomicrons, and their metabolites. VLDLs transport cholesterol and triglycerides from the liver to the peripheral tissues, whereas chylomicrons transport absorbed lipids and fat-soluble vitamins from the intestine. Homozygous or compound heterozygotes of FHBL1 (HoFHBL1) are extremely rare, and defects in APOB impair VLDL and chylomicron secretion, which result in marked hypolipidemia with malabsorption of fat and fat-soluble vitamins, leading to various complications such as growth disorders, acanthocytosis, retinitis pigmentosa, and neuropathy. Heterozygotes of FHBL1 are relatively common and are generally asymptomatic, except for moderate hypolipidemia and possible hepatic steatosis. If left untreated, HoFHBL1 can cause severe complications and disabilities that are pathologically and phenotypically similar to abetalipoproteinemia (ABL) (an autosomal recessive disorder) caused by mutations in the microsomal triglyceride transfer protein (MTTP) gene. Although HoFHBL1 and ABL cannot be distinguished from the clinical manifestations and laboratory findings of the proband, moderate hypolipidemia in first-degree relatives may help diagnose HoFHBL1. There is currently no specific treatment for HoFHBL1. Palliative therapy including high-dose fat-soluble vitamin supplementation may prevent or delay complications. Registry research on HoFHBL1 is currently ongoing to better understand the disease burden and unmet needs of this life-threatening disease with few therapeutic options.
Asunto(s)
Hipobetalipoproteinemias , Humanos , Hipobetalipoproteinemias/diagnóstico , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/terapia , Manejo de la Enfermedad , Hipobetalipoproteinemia Familiar por Apolipoproteína BRESUMEN
Transitional medicine refers to the seamless continuity of medical care for patients with childhood-onset diseases as they grow into adulthood. The transition of care must be seamless in medical treatment as the patients grow and in other medical aids such as subsidies for medical expenses in the health care system. Inappropriate transitional care, either medical or social, directly causes poorer prognosis for many early-onset diseases, including primary dyslipidemia caused by genetic abnormalities. Many primary dyslipidemias are designated as intractable diseases in the Japanese health care system for specific medical aids, as having no curative treatment and requiring enormous treatment costs for lipid management and prevention of complications. However, there are problems in transitional medicine for primary dyslipidemia in Japan. As for the medical treatment system, the diagnosis rate remains low due to the shortage of specialists, their insufficient link with generalists and other field specialists, and poor linkage between pediatricians and physicians for adults. In the medical care system, there is a mismatch of diagnostic criteria of primary dyslipidemias between children and adults for medical care expense subsidization, as between The Program for the Specific Pediatric Chronic Diseases and the Program for Designated Adult Intractable Diseases. This could lead some patients subsidized in their childhood to no longer be under the coverage of the aids after transition. This review intends to describe these issues in transitional medicine of primary dyslipidemia in Japan as a part of the efforts to resolve the problems by the Committee on Primary Dyslipidemia under the Research Program on Rare and Intractable Disease of the Ministry of Health, Labour and Welfare of Japan.
Asunto(s)
Dislipidemias , Humanos , Dislipidemias/terapia , Dislipidemias/epidemiología , Japón/epidemiología , Adulto , Transición a la Atención de Adultos , NiñoRESUMEN
Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive disorder caused by mutations in the sterol 27-hydroxylase gene (CYP27A1). Due to the deficiency of 27-hydroxylase, the synthesis of bile acids from cholesterol is impaired and excessive cholestanol accumulates in various tissues, such as the central nervous system, tendons, and lenses. Patients with CTX typically manifest intellectual decline, pyramidal tract symptoms, cerebellar symptoms, tendon xanthomas, juvenile cataracts, neonatal jaundice, chronic diarrhea, osteoporosis, and premature cardiovascular disease. Here, we report the atypical case of a 35-year-old female with CTX having massive xanthomas but without a considerable increase in serum cholestanol levels (3.9 µg/mL). In the differential diagnosis of xanthoma, CTX should not be ruled out even if the serum levels of cholestanol are not high, and genetic testing is necessary to make the appropriate diagnosis.
Asunto(s)
Xantomatosis Cerebrotendinosa , Xantomatosis , Femenino , Recién Nacido , Humanos , Adulto , Xantomatosis Cerebrotendinosa/complicaciones , Xantomatosis Cerebrotendinosa/diagnóstico , Xantomatosis Cerebrotendinosa/genética , Colestanol , Xantomatosis/diagnóstico , Colestanotriol 26-Monooxigenasa/genética , MutaciónRESUMEN
Hypertriglyceridemia (HTG)-induced pancreatitis during pregnancy could lead to maternal and fetal death. However, its genetic bases are not fully understood, and its treatment strategies are yet to be established. Here we report a case with a novel homozygous nonsense variant of LMF1 in pregnancy-associated HTG with acute pancreatitis. Our patient had childhood-onset severe HTG that had been well-controlled by dietary management in the non-pregnant period with plasma triglyceride (TG) levels at around 200 mg/dL. Milky plasma was noted at the first-trimester pregnancy checkup, followed by a severe increase in plasma TG (10,500 mg/dL) that resulted in pancreatitis in the last trimester. The implementation of strict dietary fat restriction (less than 4 grams per day) reduced plasma TG levels and led to successful delivery. Exome sequencing revealed a novel homozygous nonsense variant in LMF1 (c.697C>T, p.Arg233Ter). The activities of lipoprotein lipase (LPL) and hepatic lipase in post-heparin plasma were not abolished but reduced. The use of pemafibrate decreased plasma TG levels with a concomitant increase in LPL activity. HTG in childhood or early pregnancy is commonly assumed to be polygenic in origin but should be regarded as a feature suggestive of monogenic hyperchylomicronemia. Adequate TG monitoring and dietary fat restriction should be implemented to prevent potentially lethal events of pancreatitis.
Asunto(s)
Hipertrigliceridemia , Pancreatitis , Embarazo , Femenino , Humanos , Enfermedad Aguda , Pancreatitis/genética , Pancreatitis/complicaciones , Hipertrigliceridemia/complicaciones , Hipertrigliceridemia/genética , Homocigoto , Lipoproteína Lipasa/genética , Grasas de la Dieta , Proteínas de la Membrana/genéticaRESUMEN
Vasoactive intestinal peptide-secreting tumors (VIPomas) are extremely rare functional pancreatic neuroendocrine neoplasms (p-NENs) characterized by watery diarrhea, hypokalemia, and achlorhydria. Here, we report the case of a 51-year-old female patient with VIPoma that recurred after a long-term disease-free interval. This patient had been asymptomatic for approximately 15 years after the initial curative surgery for pancreatic VIPoma, with no metastasis. The patient underwent a second curative surgery for the locally recurrent VIPoma. Whole-exome sequencing of the resected tumor revealed a somatic mutation in MEN1, which is reportedly responsible not only for multiple endocrine neoplasia type 1 (MEN1) syndrome but also sporadic p-NENs. Symptoms were controlled with lanreotide before and after surgery. The patient is alive with no relapse following 14 months after surgery. This case demonstrates the importance of long-term observation of patients with VIPoma.
Asunto(s)
Neoplasia Endocrina Múltiple Tipo 1 , Neoplasias Pancreáticas , Vipoma , Femenino , Humanos , Persona de Mediana Edad , Vipoma/cirugía , Vipoma/diagnóstico , Vipoma/patología , Neoplasia Endocrina Múltiple Tipo 1/complicaciones , Neoplasia Endocrina Múltiple Tipo 1/cirugía , Péptido Intestinal Vasoactivo , Neoplasias Pancreáticas/diagnóstico , DiarreaRESUMEN
BACKGROUND: 25-hydroxycholesterol (25HC), produced by cholesterol 25-hydroxylase (CH25H) in macrophages, has been reported to inhibit the replication of viral pathogens such as severe acute respiratory syndrome coronavirus-2. Also, CH25H expression in macrophages is robustly induced by interferons (IFNs). OBJECTIVE: To better understand the serum level increase of 25HC in coronavirus disease 2019 (COVID-19) and how it relates to the clinical picture. METHODS: We measured the serum levels of 25HC and five other oxysterols in 17 hospitalized COVID-19 patients. RESULTS: On admission, 25HC and 27-hydroxycholesterol (27HC) serum levels were elevated; however, 7-ketocholesterol (7KC) levels were lower in patients with COVID-19 than in the healthy controls. There was no significant correlation between 25HC serum levels and disease severity markers, such as interferon-gamma (IFN-γ) and interleukin 6. Dexamethasone effectively suppressed cholesterol 25-hydroxylase (CH25H) mRNA expression in RAW 264.7 cells, a murine leukemia macrophage cell line, with or without lipopolysaccharide or IFNs; therefore, it might mitigate the increasing effects of COVID-19 on the serum levels of 25HC. CONCLUSIONS: Our results highlighted that 25HC could be used as a unique biomarker in severe COVID-19 and a potential therapeutic candidate for detecting the severity of COVID-19 and other infectious diseases.
Asunto(s)
Antivirales , COVID-19 , Humanos , Animales , Ratones , Antivirales/farmacología , Replicación Viral , Línea CelularRESUMEN
Summary: In this study, we herein describe a 47-year-old Japanese woman who manifested inheritable non-alcoholic steatohepatitis (NASH) and severe dyslipidemia. Interestingly, her NASH progression was ameliorated by treatment with a sodium-glucose co-transporter 2 (SGLT2) inhibitor. This inheritability prompted us to comprehensively decode her genomic information using whole-exome sequencing. We found the well-established I148M mutation in PNPLA3 as well as mutations in LGALS3 and PEMT for her NASH. Mutations in GCKR may contribute to both NASH and dyslipidemia. We further mined gene mutations potentially responsible for her manifestations that led to the identification of a novel M188fs mutation in MUL1 that may be causally associated with her mitochondrial dysfunction. Our case may provide some clues to better understand this spectrum of disease as well as the rationale for selecting medications. Learning points: While the PNPLA3 I148M mutation is well-established, accumulation of other mutations may accelerate susceptibility to non-alcoholic steatohepatitis (NASH). NASH and dyslipidemia may be intertwined biochemically and genetically through several key genes. SGLT2 inhibitors emerge as promising treatment for NASH albeit with interindividual variation in efficacy. Genetic background may explain the mechanisms behind the variation. A novel dysfunctional mutation in MUL1 may lead to metabolic inflexibilities through impaired mitochondrial dynamics and function.
RESUMEN
The Abetalipoproteinemia and Related Disorders Foundation was established in 2019 to provide guidance and support for the life-long management of inherited hypocholesterolemia disorders. Our mission is "to improve the lives of individuals and families affected by abetalipoproteinemia and related disorders". This review explains the molecular mechanisms behind the monogenic hypobetalipoproteinemia disorders and details their specific pathophysiology, clinical presentation and management throughout the lifespan. In this review, we focus on abetalipoproteinemia, homozygous hypobetalipoproteinemia and chylomicron retention disease; rare genetic conditions that manifest early in life and cause severe complications without appropriate treatment. Absent to low plasma lipid levels, in particular cholesterol and triglyceride, along with malabsorption of fat and fat-soluble vitamins are characteristic features of these diseases. We summarize the genetic basis of these disorders, provide guidance in their diagnosis and suggest treatment regimens including high dose fat-soluble vitamins as therapeutics. A section on preconception counseling and other special considerations pertaining to pregnancy is included. This information may be useful for patients, caregivers, physicians and insurance agencies involved in the management and support of affected individuals.
Asunto(s)
Abetalipoproteinemia , Hipobetalipoproteinemias , Trastornos del Metabolismo de los Lípidos , Humanos , Abetalipoproteinemia/diagnóstico , Abetalipoproteinemia/genética , Abetalipoproteinemia/terapia , Hipobetalipoproteinemias/diagnóstico , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/terapia , Homocigoto , VitaminasRESUMEN
During obesity, tissue macrophages increase in number and become proinflammatory, thereby contributing to metabolic dysfunction. Lipoprotein lipase (LPL), which hydrolyzes triglyceride in lipoproteins, is secreted by macrophages. However, the role of macrophage-derived LPL in adipose tissue remodeling and lipoprotein metabolism is largely unknown. To clarify these issues, we crossed leptin-deficient Lepob/ob mice with mice lacking the Lpl gene in myeloid cells (Lplm-/m-) to generate Lplm-/m-;Lepob/ob mice. We found the weight of perigonadal white adipose tissue (WAT) was increased in Lplm-/m-;Lepob/ob mice compared with Lepob/ob mice due to substantial accumulation of both adipose tissue macrophages and collagen that surrounded necrotic adipocytes. In the fibrotic epidydimal WAT of Lplm-/m-;Lepob/ob mice, we observed an increase in collagen VI and high mobility group box 1, while α-smooth muscle cell actin, a marker of myofibroblasts, was almost undetectable, suggesting that the adipocytes were the major source of the collagens. Furthermore, the adipose tissue macrophages from Lplm-/m-;Lepob/ob mice showed increased expression of genes related to fibrosis and inflammation. In addition, we determined Lplm-/m-;Lepob/ob mice were more hypertriglyceridemic than Lepob/ob mice. Lplm-/m-;Lepob/ob mice also showed slower weight gain than Lepob/ob mice, which was primarily due to reduced food intake. In conclusion, we discovered that the loss of myeloid Lpl led to extensive fibrosis of perigonadal WAT and hypertriglyceridemia. In addition to illustrating an important role of macrophage LPL in regulation of circulating triglyceride levels, these data show that macrophage LPL protects against fibrosis in obese adipose tissues.
Asunto(s)
Tejido Adiposo Blanco , Colágeno Tipo IV , Hipertrigliceridemia , Lipoproteína Lipasa , Obesidad , Actinas/metabolismo , Tejido Adiposo Blanco/patología , Animales , Colágeno Tipo IV/metabolismo , Fibrosis , Hipertrigliceridemia/genética , Hipertrigliceridemia/patología , Leptina/deficiencia , Leptina/genética , Lipoproteína Lipasa/genética , Lipoproteínas/metabolismo , Ratones , Ratones Obesos , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Triglicéridos/sangreRESUMEN
Abetalipoproteinemia (ABL) is a rare autosomal recessive disorder caused by biallelic pathogenic mutations in the MTTP gene. Deficiency of microsomal triglyceride transfer protein (MTTP) abrogates the assembly of apolipoprotein (apo) B-containing lipoprotein in the intestine and liver, resulting in malabsorption of fat and fat-soluble vitamins and severe hypolipidemia. Patients with ABL typically manifest steatorrhea, vomiting, and failure to thrive in infancy. The deficiency of fat-soluble vitamins progressively develops into a variety of symptoms later in life, including hematological (acanthocytosis, anemia, bleeding tendency, etc.), neuromuscular (spinocerebellar ataxia, peripheral neuropathy, myopathy, etc.), and ophthalmological symptoms (e.g., retinitis pigmentosa). If left untreated, the disease can be debilitating and even lethal by the third decade of life due to the development of severe complications, such as blindness, neuromyopathy, and respiratory failure. High dose vitamin supplementation is the mainstay for treatment and may prevent, delay, or alleviate the complications and improve the prognosis, enabling some patients to live to the eighth decade of life. However, it cannot fully prevent or restore impaired function. Novel therapeutic modalities that improve quality of life and prognosis are awaited. The aim of this review is to 1) summarize the pathogenesis, clinical signs and symptoms, diagnosis, and management of ABL, and 2) propose diagnostic criteria that define eligibility to receive financial support from the Japanese government for patients with ABL as a rare and intractable disease. In addition, our diagnostic criteria and the entry criterion of low-density lipoprotein cholesterol (LDL-C) ï¼15 mg/dL and apoB ï¼15 mg/dL can be useful in universal or opportunistic screening for the disease. Registry research on ABL is currently ongoing to better understand the disease burden and unmet needs of this life-threatening disease with few therapeutic options.
Asunto(s)
Abetalipoproteinemia/diagnóstico , Abetalipoproteinemia/terapia , Abetalipoproteinemia/sangre , Abetalipoproteinemia/patología , Apolipoproteínas B/sangre , LDL-Colesterol/sangre , Costo de Enfermedad , Manejo de la Enfermedad , Humanos , PronósticoRESUMEN
Primary chylomicronemia (PCM) is a rare and intractable disease characterized by marked accumulation of chylomicrons in plasma. The levels of plasma triglycerides (TGs) typically range from 1,000 - 15,000 mg/dL or higher.PCM is caused by defects in the lipoprotein lipase (LPL) pathway due to genetic mutations, autoantibodies, or unidentified causes. The monogenic type is typically inherited as an autosomal recessive trait with loss-of-function mutations in LPL pathway genes (LPL, LMF1, GPIHBP1, APOC2, and APOA5). Secondary/environmental factors (diabetes, alcohol intake, pregnancy, etc.) often exacerbate hypertriglyceridemia (HTG). The signs, symptoms, and complications of chylomicronemia include eruptive xanthomas, lipemia retinalis, hepatosplenomegaly, and acute pancreatitis with onset as early as in infancy. Acute pancreatitis can be fatal and recurrent episodes of abdominal pain may lead to dietary fat intolerance and failure to thrive.The main goal of treatment is to prevent acute pancreatitis by reducing plasma TG levels to at least less than 500-1,000 mg/dL. However, current TG-lowering medications are generally ineffective for PCM. The only other treatment options are modulation of secondary/environmental factors. Most patients need strict dietary fat restriction, which is often difficult to maintain and likely affects their quality of life.Timely diagnosis is critical for the best prognosis with currently available management, but PCM is often misdiagnosed and undertreated. The aim of this review is firstly to summarize the pathogenesis, signs, symptoms, diagnosis, and management of PCM, and secondly to propose simple diagnostic criteria that can be readily translated into general clinical practice to improve the diagnostic rate of PCM. In fact, these criteria are currently used to define eligibility to receive social support from the Japanese government for PCM as a rare and intractable disease.Nevertheless, further research to unravel the molecular pathogenesis and develop effective therapeutic modalities is warranted. Nationwide registry research on PCM is currently ongoing in Japan with the aim of better understanding the disease burden as well as the unmet needs of this life-threatening disease with poor therapeutic options.
Asunto(s)
Hiperlipoproteinemia Tipo I/diagnóstico , Hiperlipoproteinemia Tipo I/terapia , Dolor Abdominal/etiología , Animales , Manejo de la Enfermedad , Humanos , Hiperlipoproteinemia Tipo I/sangre , Hiperlipoproteinemia Tipo I/complicaciones , Pancreatitis/etiología , Pronóstico , Triglicéridos/sangreRESUMEN
Objective- APOA5 variants are strongly associated with hypertriglyceridemia, as well as increased risks of cardiovascular disease and acute pancreatitis. Hypertriglyceridemia in apo AV dysfunction often aggravates by environmental factors such as high-carbohydrate diets or aging. To date, the molecular mechanisms by which these environmental factors induce hypertriglyceridemia are poorly defined, leaving the high-risk hypertriglyceridemia condition undertreated. Previously, we reported that LXR (liver X receptor)-SREBP (sterol regulatory element-binding protein)-1c pathway regulates large-VLDL (very low-density lipoprotein) production induced by LXR agonist. However, the pathophysiological relevance of the finding remains unknown. Approach and Results- Here, we reconstitute the environment-induced hypertriglyceridemia phenotype of human APOA5 deficiency in Apoa5-/- mice and delineate the role of SREBP-1c in vivo by generating Apoa5-/- ;Srebp-1c-/- mice. The Apoa5-/- mice, which showed moderate hypertriglyceridemia on a chow diet, developed severe hypertriglyceridemia on high-carbohydrate feeding or aging as seen in patients with human apo AV deficiency. These responses were nearly completely abolished in the Apoa5-/- ;Srebp-1c-/- mice. Further mechanistic studies revealed that in response to these environmental factors, SREBP-1c was activated to increase triglyceride synthesis and to permit the incorporation of triglyceride into abnormally large-VLDL particles, which require apo AV for efficient clearance. Conclusions- Severe hypertriglyceridemia develops only when genetic factors (apo AV deficiency) and environmental effects (SREBP-1c activation) coexist. We demonstrate that the regulated production of large-sized VLDL particles via SREBP-1c determines plasma triglyceride levels in apo AV deficiency. Our findings explain the long-standing enigma of the late-onset hypertriglyceridemia phenotype of apo AV deficiency and suggest a new approach to treat hypertriglyceridemia by targeting genes that mediate environmental effects.
Asunto(s)
Apolipoproteína A-V/deficiencia , Hipertrigliceridemia/sangre , Lipoproteínas VLDL/biosíntesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/fisiología , Envejecimiento/metabolismo , Alimentación Animal/efectos adversos , Animales , Apolipoproteína A-V/genética , Apolipoproteínas/sangre , Quilomicrones/metabolismo , Femenino , Fructosa/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Interacción Gen-Ambiente , Humanos , Hidrocarburos Fluorados/farmacología , Hipertrigliceridemia/inducido químicamente , Hipertrigliceridemia/genética , Lípidos/sangre , Receptores X del Hígado/agonistas , Receptores X del Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Aceite de Oliva/toxicidad , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/deficiencia , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Sulfonamidas/farmacologíaRESUMEN
BACKGROUND: Autoantibodies against glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1) cause chylomicronemia by blocking the ability of GPIHBP1 to bind lipoprotein lipase (LPL) and transport the enzyme to its site of action in the capillary lumen. OBJECTIVE: A patient with multiple sclerosis developed chylomicronemia during interferon (IFN) ß1a therapy. The chylomicronemia resolved when the IFN ß1a therapy was discontinued. Here, we sought to determine whether the drug-induced chylomicronemia was caused by GPIHBP1 autoantibodies. METHODS: We tested plasma samples collected during and after IFN ß1a therapy for GPIHBP1 autoantibodies (by western blotting and with enzyme-linked immunosorbent assays). We also tested whether the patient's plasma blocked the binding of LPL to GPIHBP1 on GPIHBP1-expressing cells. RESULTS: During IFN ß1a therapy, the plasma contained GPIHBP1 autoantibodies, and those autoantibodies blocked GPIHBP1's ability to bind LPL. Thus, the chylomicronemia was because of the GPIHBP1 autoantibody syndrome. Consistent with that diagnosis, the plasma levels of GPIHBP1 and LPL were very low. After IFN ß1a therapy was stopped, the plasma triglyceride levels returned to normal, and GPIHBP1 autoantibodies were undetectable. CONCLUSION: The appearance of GPIHBP1 autoantibodies during IFN ß1a therapy caused chylomicronemia. The GPIHBP1 autoantibodies disappeared when the IFN ß1a therapy was stopped, and the plasma triglyceride levels fell within the normal range.
Asunto(s)
Enfermedades Autoinmunes/inmunología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/inmunología , Hiperlipoproteinemia Tipo I/inmunología , Interferón beta/efectos adversos , Esclerosis Múltiple/terapia , Receptores de Lipoproteína/inmunología , Adulto , Autoanticuerpos/sangre , Enfermedades Autoinmunes/etiología , Células Cultivadas , Femenino , Humanos , Hiperlipoproteinemia Tipo I/etiología , Interferón beta/uso terapéutico , Esclerosis Múltiple/complicaciones , Unión Proteica , Síndrome , Triglicéridos/sangre , Privación de TratamientoAsunto(s)
Anticolesterolemiantes/uso terapéutico , Aterosclerosis/tratamiento farmacológico , Cardiología/normas , Inhibidores de PCSK9 , Prevención Secundaria/métodos , Aterosclerosis/prevención & control , Enfermedad de la Arteria Coronaria/tratamiento farmacológico , Enfermedad de la Arteria Coronaria/prevención & control , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Hiperlipoproteinemia Tipo II/tratamiento farmacológico , Japón , Guías de Práctica Clínica como Asunto , Factores de Riesgo , Sociedades MédicasRESUMEN
AIM: Myriad biological effects of leptin may lead to broad therapeutic applications for various metabolic diseases, including diabetes and its complications; however, in contrast to its anorexic effect, the molecular mechanisms underlying adipopenic and glucose-lowering effects of leptin have not been fully understood. Here we aim to clarify the role of hormone-sensitive lipase (HSL) in leptin's action. METHODS: Wild-type (WT) and HSL-deficient (HSLKO) mice were made hyperleptinemic by two commonly-used methods: adenovirus-mediated overexpression of leptin and continuous subcutaneous infusion of leptin by osmotic pumps. The amount of food intake, body weights, organ weights, and parameters of glucose and lipid metabolism were measured. RESULTS: Hyperleptinemia equally suppressed the food intake in WT and HSLKO mice. On the other hand, leptin-mediated fat loss and glucose-lowering were significantly blunted in the absence of HSL when leptin was overexpressed by recombinant adenovirus carrying leptin. By osmotic pumps, the fat-losing and glucose-lowering effects of leptin were milder due to lower levels of hyperleptinemia; although the difference between WT and HSLKO mice did not reach statistical significance, HSLKO mice had a tendency to retain more fat than WT mice in the face of hyperleptinemia. CONCLUSIONS: We clarify for the first time the role of HSL in leptin's effect using a genetic model: leptin-promoted fat loss and glucose-lowering are at least in part mediated via HSL-mediated lipolysis. Further studies to define the pathophysiological role of adipocyte lipases in leptin action may lead to a new therapeutic approach to circumvent leptin resistance.
Asunto(s)
Tejido Adiposo/patología , Glucosa/metabolismo , Leptina/farmacología , Lipasa/fisiología , Lipólisis/efectos de los fármacos , Esterol Esterasa/fisiología , Tejido Adiposo/efectos de los fármacos , Animales , Femenino , Leptina/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Identification of cognate ligands for G protein-coupled receptors (GPCRs) provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through ß-arrestins. As such, monitoring ß-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including ß-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-ß-arrestin interaction via ß-lactamase enzyme fragment complementation. Inter alia, ß-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS). In a reporter cell, complementary fragments of ß-lactamase (α and ω) were fused to ß-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (ß-arrestin-α and GPCR-ω), and this inducible interaction was measured through reconstituted ß-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3). We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR). Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands.
Asunto(s)
Arrestinas/metabolismo , Encefalinas/farmacología , Receptores de Bombesina/metabolismo , beta-Lactamasas/metabolismo , Glándulas Suprarrenales/efectos de los fármacos , Glándulas Suprarrenales/metabolismo , Animales , Células CHO , Bovinos , Cricetulus , Unión Proteica , Receptores Acoplados a Proteínas G/metabolismo , Relación Estructura-Actividad , Arrestina beta 2 , beta-ArrestinasRESUMEN
G protein-coupled receptors (GPCRs) play a critical role in many physiological systems and represent one of the largest families of signal-transducing receptors. The number of GPCRs at the cell surface regulates cellular responsiveness to their cognate ligands, and the number of GPCRs, in turn, is dynamically controlled by receptor endocytosis. Recent studies have demonstrated that GPCR endocytosis, in addition to affecting receptor desensitization and resensitization, contributes to acute G protein-mediated signaling. Thus, endocytic GPCR behavior has a significant impact on various aspects of physiology. In this study, we developed a novel GPCR internalization assay to facilitate characterization of endocytic GPCR behavior. We genetically engineered chimeric GPCRs by fusing HaloTag (a catalytically inactive derivative of a bacterial hydrolase) to the N-terminal end of the receptor (HT-GPCR). HaloTag has the ability to form a stable covalent bond with synthetic HaloTag ligands that contain fluorophores or a high-affinity handle (such as biotin) and the HaloTag reactive linker. We selectively labeled HT-GPCRs at the cell surface with a HaloTag PEG ligand, and this pulse-chase covalent labeling allowed us to directly monitor the relative number of internalized GPCRs after agonist stimulation. Because the endocytic activities of GPCR ligands are not necessarily correlated with their agonistic activities, applying this novel methodology to orphan GPCRs, or even to already characterized GPCRs, will increase the likelihood of identifying currently unknown ligands that have been missed by conventional pharmacological assays.
Asunto(s)
Proteínas Bacterianas/metabolismo , Bioensayo , Endocitosis/genética , Hidrolasas/metabolismo , Receptores de Orexina/metabolismo , Receptores de Bombesina/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Biotina/química , Células CHO , Membrana Celular/química , Membrana Celular/metabolismo , Cricetulus , Colorantes Fluorescentes/química , Expresión Génica , Hidrolasas/genética , Ligandos , Datos de Secuencia Molecular , Receptores de Orexina/genética , Plásmidos/química , Plásmidos/genética , Ingeniería de Proteínas , Transporte de Proteínas , Receptores de Bombesina/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Coloración y Etiquetado/métodos , Transducción GenéticaRESUMEN
Squalene synthase (SS) catalyzes the biosynthesis of squalene, the first specific intermediate in the cholesterol biosynthetic pathway. To test the feasibility of lowering plasma cholesterol by inhibiting hepatic SS, we generated mice in which SS is specifically knocked out in the liver (L-SSKO) using Cre-loxP technology. Hepatic SS activity of L-SSKO mice was reduced by >90%. In addition, cholesterol biosynthesis in the liver slices was almost eliminated. Although the hepatic squalene contents were markedly reduced in L-SSKO mice, the hepatic contents of cholesterol and its precursors distal to squalene were indistinguishable from those of control mice, indicating the presence of sufficient centripetal flow of cholesterol and/or its precursors from the extrahepatic tissues. L-SSKO mice showed a transient liver dysfunction with moderate hepatomegaly presumably secondary to increased farnesol production. In a fed state, the plasma total cholesterol and triglyceride were significantly reduced in L-SSKO mice, primarily owing to reduced hepatic VLDL secretion. In a fasted state, the hypolipidemic effect was lost. mRNA expression of liver X receptor α target genes was reduced, while that of sterol-regulatory element binding protein 2 target genes was increased. In conclusion, liver-specific ablation of SS inhibits hepatic cholesterol biosynthesis and induces hypolipidemia without increasing significant mortality.