Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Struct Funct ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38797697

RESUMEN

Cell biologists have long sought the ability to observe intracellular structures in living cells without labels. This study presents procedures to adjust a commercially available apodized phase-contrast (APC) microscopy system for better visualizing the dynamic behaviors of various subcellular organelles in living cells. By harnessing the versatility of this technique to capture sequential images, we could observe morphological changes in cellular geometry after virus infection in real time without probes or invasive staining. The tune-up APC microscopy system is a highly efficient platform for simultaneously observing the dynamic behaviors of diverse subcellular structures with exceptional resolution.Key words: Label-free imaging, Organelle dynamics, Virus infections, Apodized phase contrast.

2.
Biol Pharm Bull ; 47(5): 930-940, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38692871

RESUMEN

The coronavirus disease 2019 (COVID-19) is caused by the etiological agent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19, with the recurrent epidemics of new variants of SARS-CoV-2, remains a global public health problem, and new antivirals are still required. Some cholesterol derivatives, such as 25-hydroxycholesterol, are known to have antiviral activity against a wide range of enveloped and non-enveloped viruses, including SARS-CoV-2. At the entry step of SARS-CoV-2 infection, the viral envelope fuses with the host membrane dependent of viral spike (S) glycoproteins. From the screening of cholesterol derivatives, we found a new compound 26,27-dinorcholest-5-en-24-yne-3ß,20-diol (Nat-20(S)-yne) that inhibited the SARS-CoV-2 S protein-dependent membrane fusion in a syncytium formation assay. Nat-20(S)-yne exhibited the inhibitory activities of SARS-CoV-2 pseudovirus entry and intact SARS-CoV-2 infection in a dose-dependent manner. Among the variants of SARS-CoV-2, inhibition of infection by Nat-20(S)-yne was stronger in delta and Wuhan strains, which predominantly invade into cells via fusion at the plasma membrane, than in omicron strains. The interaction between receptor-binding domain of S proteins and host receptor ACE2 was not affected by Nat-20(S)-yne. Unlike 25-hydroxycholesterol, which regulates various steps of cholesterol metabolism, Nat-20(S)-yne inhibited only de novo cholesterol biosynthesis. As a result, plasma membrane cholesterol content was substantially decreased in Nat-20(S)-yne-treated cells, leading to inhibition of SARS-CoV-2 infection. Nat-20(S)-yne having a new mechanism of action may be a potential therapeutic candidate for COVID-19.


Asunto(s)
Antivirales , COVID-19 , Colesterol , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Humanos , COVID-19/virología , Colesterol/metabolismo , Células Vero , Chlorocebus aethiops , Glicoproteína de la Espiga del Coronavirus/metabolismo , Animales , Internalización del Virus/efectos de los fármacos , Betacoronavirus/efectos de los fármacos , Pandemias , Tratamiento Farmacológico de COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/virología , Enzima Convertidora de Angiotensina 2/metabolismo , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología
3.
iScience ; 27(4): 109363, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38500835

RESUMEN

A current challenge is the emergence of SARS-CoV-2 variants, such as BQ.1.1 and XBB.1.5, that can evade immune defenses, thereby limiting antibody drug effectiveness. Emergency-use antibody drugs, including the widely effective bebtelovimab, are losing their benefits. One potential approach to address this issue are bispecific antibodies which combine the targeting abilities of two antibodies with distinct epitopes. We engineered neutralizing bispecific antibodies in the IgG-scFv format from two initially non-neutralizing antibodies, CvMab-6 (which binds to the receptor-binding domain [RBD]) and CvMab-62 (targeting a spike protein S2 subunit epitope adjacent to the known anti-S2 antibody epitope). Furthermore, we created a bispecific antibody by incorporating the scFv of bebtelovimab with our anti-S2 antibody, demonstrating significant restoration of effectiveness against bebtelovimab-resistant BQ.1.1 variants. This study highlights the potential of neutralizing bispecific antibodies, which combine existing less effective anti-RBD antibodies with anti-S2 antibodies, to revive the effectiveness of antibody therapeutics compromised by immune-evading variants.

4.
Microbiol Immunol ; 67(3): 166-170, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36564197

RESUMEN

Global efforts are underway to eliminate measles and rubella, and active viral surveillance is the key to achieving this goal. In addition, the World Health Organization announced guidelines for handling materials potentially infectious for poliovirus (PV) to minimize the risk of PV reintroduction and to achieve PV eradication. To support global efforts, we established new PV-non-susceptible cell lines that are useful for the isolation of measles virus (MeV) and rubella virus (RuV) (Vero ΔPVR1/2 hSLAM+). In the cell lines, MeV and RuV replicated efficiently, with no concern regarding PV replication.


Asunto(s)
Sarampión , Poliovirus , Rubéola (Sarampión Alemán) , Animales , Chlorocebus aethiops , Humanos , Células Vero , Sarampión/epidemiología , Virus del Sarampión , Receptores Virales/genética , Virus de la Rubéola
5.
Virus Res ; 322: 198935, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36152929

RESUMEN

Yellow fever virus (YFV), a member of the genus Flavivirus, family Flaviviridae, is the etiological agent for an acute viral hemorrhagic disease, yellow fever. Although effective live attenuated vaccines based on the strain YFV 17D are currently available, no specific antiviral drug is available, and the disease remains a major public health concern. Hence, the discovery and development of antiviral drugs should lead to great benefits in controlling the disease. To provide a screening platform for antiviral agents targeting YFV RNA translation/replication, we have established and characterized two Vero cell lines that persistently harbor a subgenomic replicon derived from YFV 17D-204 (referred to as replicon cells). The replicon carries YFV nucleotides (1 - 176 and 2382-10,862) and a green fluorescent protein (GFP)-Zeocin resistance fusion gene as a selection marker and indicator of persistent replication. Immunofluorescence analysis revealed that both replicon cells and YFV 17D-infected cells showed similar distribution patterns of viral NS4B protein and replication intermediate, double-stranded RNA. Sequencing analysis of persistent replicons from the two replicon cell lines suggested that their nucleotide sequences did not vary greatly following multiple passages. We examined the effect of five agents, the antiviral cytokines interferon-ß and -γ, the nucleoside analog ribavirin, the squalene synthase inhibitor zaragozic acid A, and the antibiotic rifapentine, a recently reported entry and replication inhibitor against YFV, on the persistent replication in the two replicon cell lines. These agents were selected because they inhibited both production of YFV 17D and transient replication of a luciferase-expressing replicon in Vero cells, without greatly affecting cell viability. We found that each of the agents decreased GFP fluorescence in the replicon cells, albeit to varying degrees. The agents other than rifapentine also showed a decrease in viral RNA levels in the replicon cells comparable to that seen for GFP fluorescence. These results indicate that persistent replication is susceptible to each of these five agents, although their mechanisms of action may differ. Taken together, these results provide evidence that translation/replication of the replicon in the replicon cells mimics that of the viral genome upon YFV 17D infection, indicating that the replicon cell lines can serve as a useful tool for high-throughput antiviral drug screening.


Asunto(s)
Replicón , Virus de la Fiebre Amarilla , Chlorocebus aethiops , Animales , Virus de la Fiebre Amarilla/genética , Células Vero , Línea Celular , Antivirales/farmacología , Vacunas Atenuadas , Replicación Viral
6.
Sci Rep ; 11(1): 6746, 2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762624

RESUMEN

Polio or poliomyelitis is a disabling and life-threatening disease caused by poliovirus (PV). As a consequence of global polio vaccination efforts, wild PV serotypes 2 and 3 have been eradicated around the world, and wild PV serotype 1-transmitted cases have been largely eliminated except for limited regions. However, vaccine-derived PV, pathogenically reverted live PV vaccine strains, has become a serious issue. For the global eradication of polio, the World Health Organization is conducting the third edition of the Global Action Plan, which is requesting stringent control of potentially PV-infected materials. To facilitate the mission, we generated a PV-nonsusceptible Vero cell subline, which may serve as an ideal replacement of standard Vero cells to isolate emerging/re-emerging viruses without the risk of generating PV-infected materials.


Asunto(s)
Poliovirus/fisiología , Células Vero/virología , Tropismo Viral , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Técnicas de Cultivo de Célula , Células Cultivadas , Chlorocebus aethiops , Salud Global , Humanos , Poliomielitis/epidemiología , Poliomielitis/virología , Receptores Virales/química , Receptores Virales/genética , Receptores Virales/metabolismo , Replicación Viral , Organización Mundial de la Salud
7.
PLoS One ; 14(5): e0216807, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31095605

RESUMEN

Classical- (C-) and atypical L-type bovine spongiform encephalopathy (BSE) prions cause different pathological phenotypes in cattle brains, and the disease-associated forms of each prion protein (PrPSc) has a dissimilar biochemical signature. Bovine C-BSE prions are the causative agent of variant Creutzfeldt-Jakob disease. To date, human infection with L-BSE prions has not been reported, but they can be transmitted experimentally from cows to cynomolgus monkeys (Macaca fascicularis), a non-human primate model. When transmitted to monkeys, C- and L-BSE prions induce different pathological phenotypes in the brain. However, when isolated from infected brains, the two prion proteins (PrPSc) have similar biochemical signatures (i.e., electrophoretic mobility, glycoforms, and resistance to proteinase K). Such similarities suggest the possibility that L-BSE prions alter their virulence to that of C-BSE prions during propagation in monkeys. To clarify this possibility, we conducted bioassays using inbred mice. C-BSE prions with or without propagation in monkeys were pathogenic to mice, and exhibited comparable incubation periods in secondary passage in mice. By contrast, L-BSE prions, either with or without propagation in monkeys, did not cause the disease in mice, indicating that the pathogenicity of L-BSE prions does not converge towards a C-BSE prion type in this primate model. These results suggest that, although C- and L-BSE prions propagated in cynomolgus monkeys exhibit similar biochemical PrPSc signatures and consist of the monkey amino acid sequence, the two prions maintain strain-specific conformations of PrPSc in which they encipher and retain unique pathogenic traits.


Asunto(s)
Encéfalo , Encefalopatía Espongiforme Bovina , Priones/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/patología , Bovinos , Encefalopatía Espongiforme Bovina/metabolismo , Encefalopatía Espongiforme Bovina/patología , Encefalopatía Espongiforme Bovina/transmisión , Femenino , Humanos , Macaca fascicularis , Ratones
8.
J Virol ; 86(10): 5626-36, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22398286

RESUMEN

Prion diseases are characterized by the replicative propagation of disease-associated forms of prion protein (PrP(Sc); PrP refers to prion protein). The propagation is believed to proceed via two steps; the initial binding of the normal form of PrP (PrP(C)) to PrP(Sc) and the subsequent conversion of PrP(C) to PrP(Sc). We have explored the two-step model in prion-infected mouse neuroblastoma (ScN2a) cells by focusing on the mouse PrP (MoPrP) segment 92-GGTHNQWNKPSKPKTN-107, which is within a region previously suggested to be part of the binding interface or shown to differ in its accessibility to anti-PrP antibodies between PrP(C) and PrP(Sc). Exchanging the MoPrP segment with the corresponding chicken PrP segment (106-GGSYHNQKPWKPPKTN-121) revealed the necessity of MoPrP residues 99 to 104 for the chimeras to achieve the PrP(Sc) state, while segment 95 to 98 was replaceable with the chicken sequence. An alanine substitution at position 100, 102, 103, or 104 of MoPrP gave rise to nonconvertible mutants that associated with MoPrP(Sc) and interfered with the conversion of endogenous MoPrP(C). The interference was not evoked by a chimera (designated MCM2) in which MoPrP segment 95 to 104 was changed to the chicken sequence, though MCM2 associated with MoPrP(Sc). Incubation of the cells with a synthetic peptide composed of MoPrP residues 93 to 107 or alanine-substituted cognates did not inhibit the conversion, whereas an anti-P8 antibody recognizing the above sequence in PrP(C) reduced the accumulation of PrP(Sc) after 10 days of incubation of the cells. These results suggest the segment 100 to 104 of MoPrP(C) plays a key role in conversion after binding to MoPrP(Sc).


Asunto(s)
Neuroblastoma/metabolismo , Enfermedades por Prión/metabolismo , Priones/química , Priones/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Línea Celular , Pollos , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas PrPC/química , Proteínas PrPC/genética , Proteínas PrPC/metabolismo , Proteínas PrPSc/química , Proteínas PrPSc/genética , Proteínas PrPSc/metabolismo , Proteínas Priónicas , Priones/genética , Alineación de Secuencia
9.
Microbiol Immunol ; 52(7): 357-65, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18667034

RESUMEN

Transmissible spongiform encephalopathies are infectious and neurodegenerative disorders that cause neural deposition of aggregates of the disease-associated form of PrP(Sc). PrP(Sc) reproduces by recruiting and converting the cellular PrP(C), and ScN2a cells support PrP(Sc) propagation. We found that incubation of ScN2a cells with a fibril peptide named P9, which comprises an intrinsic sequence of residues 167-184 of mouse PrP(C), significantly reduced the amount of PrP(Sc) in 24 hr. P9 did not affect the rates of synthesis and degradation of PrP(C). Interestingly, immunofluorescence analysis showed that the incubation of ScN2a cells with P9 induced colocalization of the accumulation of PrP with cathepsin D-positive compartments, whereas the accumulation of PrP in the cells without P9 colocalized mainly with lysosomal associated membrane proteins (LAMP)-1-positive compartments but rarely with cathepsin D-positive compartments in perinuclear regions. Lysosomal enzyme inhibitors attenuated the anti-PrP(Sc) activity; however, a proteasome inhibitor did not impair P9 activity. In addition, P9 neither promoted the ubiquitination of cellular proteins nor caused the accumulation of LC3-II, a biochemical marker of autophagy. These results indicate that P9 promotes PrP(Sc) redistribution from late endosomes to lysosomes, thereby attaining PrP(Sc) degradation.


Asunto(s)
Lisosomas/metabolismo , Péptidos/síntesis química , Péptidos/metabolismo , Proteína PrP 27-30/síntesis química , Proteína PrP 27-30/inmunología , Proteínas PrPSc/metabolismo , Secuencia de Aminoácidos , Animales , Catepsina D/análisis , Endosomas/química , Proteínas de Membrana de los Lisosomas/análisis , Lisosomas/química , Ratones , Microscopía Confocal , Alineación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA