Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Trends Genet ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38926010

RESUMEN

The dark genome, the nonprotein-coding part of the genome, is replete with long noncoding RNAs (lncRNAs). These functionally versatile transcripts, with specific temporal and spatial expression patterns, are critical gene regulators that play essential roles in health and disease. In recent years, FAAH-OUT was identified as the first lncRNA associated with an inherited human pain insensitivity disorder. Several other lncRNAs have also been studied for their contribution to chronic pain and genome-wide association studies are frequently identifying single nucleotide polymorphisms that map to lncRNAs. For a long time overlooked, lncRNAs are coming out of the dark and into the light as major players in human pain pathways and as potential targets for new RNA-based analgesic medicines.

2.
Nat Commun ; 15(1): 2821, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561401

RESUMEN

Activation of the p53 tumor suppressor triggers a transcriptional program to control cellular response to stress. However, the molecular mechanisms by which p53 controls gene transcription are not completely understood. Here, we uncover the critical role of spatio-temporal genome architecture in this process. We demonstrate that p53 drives direct and indirect changes in genome compartments, topologically associating domains, and DNA loops prior to one hour of its activation, which escort the p53 transcriptional program. Focusing on p53-bound enhancers, we report 340 genes directly regulated by p53 over a median distance of 116 kb, with 74% of these genes not previously identified. Finally, we showcase that p53 controls transcription of distal genes through newly formed and pre-existing enhancer-promoter loops in a cohesin dependent manner. Collectively, our findings demonstrate a previously unappreciated architectural role of p53 as regulator at distinct topological layers and provide a reliable set of new p53 direct target genes that may help designs of cancer therapies.


Asunto(s)
Cohesinas , Proteína p53 Supresora de Tumor , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , ADN , Cromatina/genética
3.
Brain ; 146(9): 3851-3865, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37222214

RESUMEN

Chronic pain affects millions of people worldwide and new treatments are needed urgently. One way to identify novel analgesic strategies is to understand the biological dysfunctions that lead to human inherited pain insensitivity disorders. Here we report how the recently discovered brain and dorsal root ganglia-expressed FAAH-OUT long non-coding RNA (lncRNA) gene, which was found from studying a pain-insensitive patient with reduced anxiety and fast wound healing, regulates the adjacent key endocannabinoid system gene FAAH, which encodes the anandamide-degrading fatty acid amide hydrolase enzyme. We demonstrate that the disruption in FAAH-OUT lncRNA transcription leads to DNMT1-dependent DNA methylation within the FAAH promoter. In addition, FAAH-OUT contains a conserved regulatory element, FAAH-AMP, that acts as an enhancer for FAAH expression. Furthermore, using transcriptomic analyses in patient-derived cells we have uncovered a network of genes that are dysregulated from disruption of the FAAH-FAAH-OUT axis, thus providing a coherent mechanistic basis to understand the human phenotype observed. Given that FAAH is a potential target for the treatment of pain, anxiety, depression and other neurological disorders, this new understanding of the regulatory role of the FAAH-OUT gene provides a platform for the development of future gene and small molecule therapies.


Asunto(s)
ARN Largo no Codificante , Humanos , Dolor/genética , Analgésicos , Ganglios Espinales
4.
Nat Commun ; 14(1): 2442, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117223

RESUMEN

Voltage-gated sodium (NaV) channels are critical regulators of neuronal excitability and are targeted by many toxins that directly interact with the pore-forming α subunit, typically via extracellular loops of the voltage-sensing domains, or residues forming part of the pore domain. Excelsatoxin A (ExTxA), a pain-causing knottin peptide from the Australian stinging tree Dendrocnide excelsa, is the first reported plant-derived NaV channel modulating peptide toxin. Here we show that TMEM233, a member of the dispanin family of transmembrane proteins expressed in sensory neurons, is essential for pharmacological activity of ExTxA at NaV channels, and that co-expression of TMEM233 modulates the gating properties of NaV1.7. These findings identify TMEM233 as a previously unknown NaV1.7-interacting protein, position TMEM233 and the dispanins as accessory proteins that are indispensable for toxin-mediated effects on NaV channel gating, and provide important insights into the function of NaV channels in sensory neurons.


Asunto(s)
Toxinas Biológicas , Urtica dioica , Australia , Dolor , Péptidos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo
5.
Front Mol Biosci ; 9: 823195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720128

RESUMEN

Restoration of the p53 tumor suppressor for personalised cancer therapy is a promising treatment strategy. However, several high-affinity MDM2 inhibitors have shown substantial side effects in clinical trials. Thus, elucidation of the molecular mechanisms of action of p53 reactivating molecules with alternative functional principle is of the utmost importance. Here, we report a discovery of a novel allosteric mechanism of p53 reactivation through targeting the p53 N-terminus which promotes inhibition of both p53/MDM2 (murine double minute 2) and p53/MDM4 interactions. Using biochemical assays and molecular docking, we identified the binding site of two p53 reactivating molecules, RITA (reactivation of p53 and induction of tumor cell apoptosis) and protoporphyrin IX (PpIX). Ion mobility-mass spectrometry revealed that the binding of RITA to serine 33 and serine 37 is responsible for inducing the allosteric shift in p53, which shields the MDM2 binding residues of p53 and prevents its interactions with MDM2 and MDM4. Our results point to an alternative mechanism of blocking p53 interaction with MDM2 and MDM4 and may pave the way for the development of novel allosteric inhibitors of p53/MDM2 and p53/MDM4 interactions.

6.
Wellcome Open Res ; 6: 250, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35233469

RESUMEN

Background: Somatosensation depends on primary sensory neurons of the trigeminal and dorsal root ganglia (DRG). Transcriptional profiling of mouse DRG sensory neurons has defined at least 18 distinct neuronal cell types. Using an advillin promoter, we have generated a transgenic mouse line that only expresses diphtheria toxin A (DTA) in sensory neurons in the presence of Cre recombinase. This has allowed us to ablate specific neuronal subsets within the DRG using a range of established and novel Cre lines that encompass all sets of sensory neurons.    Methods: A floxed-tdTomato-stop-DTA bacterial artificial chromosome (BAC) transgenic reporter line (AdvDTA) under the control of the mouse advillin DRG promoter was generated. The line was first validated using a Na v1.8 Cre and then crossed to CGRP CreER (Calca), Th CreERT2, Tmem45b Cre, Tmem233 Cre, Ntng1 Cre and TrkB CreER (Ntrk2) lines. Pain behavioural assays included Hargreaves', hot plate, Randall-Selitto, cold plantar, partial sciatic nerve ligation and formalin tests. Results: Motor activity, as assessed by the rotarod test, was normal for all lines tested. Noxious mechanosensation was significantly reduced when either Na v1.8 positive neurons or Tmem45b positive neurons were ablated whilst acute heat pain was unaffected. In contrast, noxious mechanosensation was normal following ablation of CGRP-positive neurons but acute heat pain thresholds were significantly elevated and a reduction in nocifensive responses was observed in the second phase of the formalin test. Ablation of TrkB-positive neurons led to significant deficits in mechanical hypersensitivity in the partial sciatic nerve ligation neuropathic pain model. Conclusions: Ablation of specific DRG neuronal subsets using the AdvDTA line will be a useful resource for further functional characterization of somatosensory processing, neuro-immune interactions and chronic pain disorders.

7.
Sci Adv ; 6(8): eaax4568, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32128393

RESUMEN

Expression of the voltage-gated sodium channel NaV1.7 in sensory neurons is required for pain sensation. We examined the role of NaV1.7 in the dorsal horn of the spinal cord using an epitope-tagged NaV1.7 knock-in mouse. Immuno-electron microscopy showed the presence of NaV1.7 in dendrites of superficial dorsal horn neurons, despite the absence of mRNA. Rhizotomy of L5 afferent nerves lowered the levels of NaV1.7 in the dorsal horn. Peripheral nervous system-specific NaV1.7 null mutant mice showed central deficits, with lamina II dorsal horn tonic firing neurons more than halved and single spiking neurons more than doubled. NaV1.7 blocker PF05089771 diminished excitability in dorsal horn neurons but had no effect on NaV1.7 null mutant mice. These data demonstrate an unsuspected functional role of primary afferent neuron-generated NaV1.7 in dorsal horn neurons and an expression pattern that would not be predicted by transcriptomic analysis.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/genética , Células del Asta Posterior/fisiología , Células Receptoras Sensoriales/fisiología , Animales , Fenómenos Electrofisiológicos , Potenciales Postsinápticos Excitadores , Expresión Génica , Inmunohistoquímica , Ratones , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/ultraestructura , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/ultraestructura , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
8.
Br J Anaesth ; 123(2): e249-e253, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30929760

RESUMEN

The study of rare families with inherited pain insensitivity can identify new human-validated analgesic drug targets. Here, a 66-yr-old female presented with nil requirement for postoperative analgesia after a normally painful orthopaedic hand surgery (trapeziectomy). Further investigations revealed a lifelong history of painless injuries, such as frequent cuts and burns, which were observed to heal quickly. We report the causative mutations for this new pain insensitivity disorder: the co-inheritance of (i) a microdeletion in dorsal root ganglia and brain-expressed pseudogene, FAAH-OUT, which we cloned from the fatty-acid amide hydrolase (FAAH) chromosomal region; and (ii) a common functional single-nucleotide polymorphism in FAAH conferring reduced expression and activity. Circulating concentrations of anandamide and related fatty-acid amides (palmitoylethanolamide and oleoylethanolamine) that are all normally degraded by FAAH were significantly elevated in peripheral blood compared with normal control carriers of the hypomorphic single-nucleotide polymorphism. The genetic findings and elevated circulating fatty-acid amides are consistent with a phenotype resulting from enhanced endocannabinoid signalling and a loss of function of FAAH. Our results highlight previously unknown complexity at the FAAH genomic locus involving the expression of FAAH-OUT, a novel pseudogene and long non-coding RNA. These data suggest new routes to develop FAAH-based analgesia by targeting of FAAH-OUT, which could significantly improve the treatment of postoperative pain and potentially chronic pain and anxiety disorders.


Asunto(s)
Amidohidrolasas/genética , Ácidos Araquidónicos/sangre , Endocannabinoides/sangre , Insensibilidad Congénita al Dolor/sangre , Insensibilidad Congénita al Dolor/genética , Alcamidas Poliinsaturadas/sangre , Seudogenes/genética , Anciano , Amidohidrolasas/sangre , Femenino , Humanos , Polimorfismo de Nucleótido Simple/genética
9.
Brain ; 141(2): 365-376, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29253101

RESUMEN

Chronic pain is a major global public health issue causing a severe impact on both the quality of life for sufferers and the wider economy. Despite the significant clinical burden, little progress has been made in terms of therapeutic development. A unique approach to identifying new human-validated analgesic drug targets is to study rare families with inherited pain insensitivity. Here we have analysed an otherwise normal family where six affected individuals display a pain insensitive phenotype that is characterized by hyposensitivity to noxious heat and painless bone fractures. This autosomal dominant disorder is found in three generations and is not associated with a peripheral neuropathy. A novel point mutation in ZFHX2, encoding a putative transcription factor expressed in small diameter sensory neurons, was identified by whole exome sequencing that segregates with the pain insensitivity. The mutation is predicted to change an evolutionarily highly conserved arginine residue 1913 to a lysine within a homeodomain. Bacterial artificial chromosome (BAC) transgenic mice bearing the orthologous murine p.R1907K mutation, as well as Zfhx2 null mutant mice, have significant deficits in pain sensitivity. Gene expression analyses in dorsal root ganglia from mutant and wild-type mice show altered expression of genes implicated in peripheral pain mechanisms. The ZFHX2 variant and downstream regulated genes associated with a human pain-insensitive phenotype are therefore potential novel targets for the development of new analgesic drugs.awx326media15680039660001.


Asunto(s)
Insensibilidad Congénita al Dolor/genética , Umbral del Dolor/fisiología , Dolor/fisiopatología , Mutación Puntual/genética , Caja Homeótica 2 de Unión a E-Box con Dedos de Zinc/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Adolescente , Adulto , Anciano , Animales , Calcio/metabolismo , Capsaicina/efectos adversos , Modelos Animales de Enfermedad , Femenino , Ganglios Espinales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Hiperalgesia/patología , Hiperalgesia/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Dolor/inducido químicamente , Insensibilidad Congénita al Dolor/patología , Insensibilidad Congénita al Dolor/fisiopatología , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Piel/patología , Adulto Joven
10.
Cell Cycle ; 15(21): 2958-2972, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27611229

RESUMEN

DNA replication initiation is a key event in the cell cycle, which is dependent on 2 kinases - CDK2 and CDC7. Here we report a novel mechanism in which p53 induces G1 checkpoint and cell cycle arrest by downregulating CDC7 kinase in response to genotoxic stress. We demonstrate that p53 controls CDC7 stability post-transcriptionally via miR-192/215 and post-translationally via Fbxw7ß E3 ubiquitin ligase. The p53-dependent pathway of CDC7 downregulation is interlinked with the p53-p21-CDK2 pathway, as p21-mediated inhibition of CDK2-dependent phosphorylation of CDC7 on Thr376 is required for GSK3ß-phosphorylation and Fbxw7ß-dependent degradation of CDC7. Notably, sustained oncogenic high levels of active CDC7 exert a negative feedback onto p53, leading to unrestrained S-phase progression and accumulation of DNA damage. Thus, p53-dependent control of CDC7 levels is essential for blocking G1/S cell-cycle transition upon genotoxic stress, thereby safeguarding the genome from instability and thus representing a novel general stress response.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Daño del ADN , Puntos de Control de la Fase G1 del Ciclo Celular , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteínas de Ciclo Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Regulación hacia Abajo/genética , Retroalimentación Fisiológica , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Células HCT116 , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transfección , Ubiquitina-Proteína Ligasas/metabolismo
11.
Nucleic Acids Res ; 44(13): 6185-99, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27034469

RESUMEN

p53 tumor suppressor is a transcription factor that controls cell cycle and genetic integrity. In response to genotoxic stress p53 activates DNA repair, cell cycle arrest, apoptosis or senescence, which are initiated via p53 binding to its specific DNA response elements (RE). The consensus p53 DNA RE consists of two decameric palindromic half-site sequences. Crystallographic studies have demonstrated that two isolated p53 DNA-binding core domains interact with one half-site of the p53 DNA REs suggesting that one p53 tetramer is bound to one RE. However, our recent 3D cryo-EM studies showed that the full-length p53 tetramer is bound to only one half-site of RE.Here, we have used biochemical and electron microscopy (EM) methods to analyze DNA-binding of human and murine p53 tetramers to various p53 DNA REs. Our new results demonstrate that two p53 tetramers can interact sequence-specifically with one DNA RE at the same time. In particular, the EM structural analysis revealed that two p53 tetramers bind one DNA RE simultaneously with DNA positioned between them. These results demonstrate a mode different from that assumed previously for the p53-DNA interaction and suggest important biological implications on p53 activity as a transcriptional regulator of cellular response to stress.


Asunto(s)
Daño del ADN/genética , Proteínas de Unión al ADN/genética , Elementos de Respuesta/genética , Proteína p53 Supresora de Tumor/genética , Animales , Sitios de Unión/genética , Ciclo Celular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Secuencias Invertidas Repetidas/genética , Ratones , Conformación Proteica , Dominios Proteicos/genética , Multimerización de Proteína/genética , Estructura Terciaria de Proteína , Activación Transcripcional , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
12.
PLoS One ; 10(6): e0128830, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26035178

RESUMEN

The Nav1.7 voltage-gated sodium channel, encoded by SCN9A, is critical for human pain perception yet the transcriptional and post-transcriptional mechanisms that regulate this gene are still incompletely understood. Here, we describe a novel natural antisense transcript (NAT) for SCN9A that is conserved in humans and mice. The NAT has a similar tissue expression pattern to the sense gene and is alternatively spliced within dorsal root ganglia. The human and mouse NATs exist in cis with the sense gene in a tail-to-tail orientation and both share sequences that are complementary to the terminal exon of SCN9A/Scn9a. Overexpression analyses of the human NAT in human embryonic kidney (HEK293A) and human neuroblastoma (SH-SY5Y) cell lines show that it can function to downregulate Nav1.7 mRNA, protein levels and currents. The NAT may play an important role in regulating human pain thresholds and is a potential candidate gene for individuals with chronic pain disorders that map to the SCN9A locus, such as Inherited Primary Erythromelalgia, Paroxysmal Extreme Pain Disorder and Painful Small Fibre Neuropathy, but who do not contain mutations in the sense gene. Our results strongly suggest the SCN9A NAT as a prime candidate for new therapies based upon augmentation of existing antisense RNAs in the treatment of chronic pain conditions in man.


Asunto(s)
Ganglios Espinales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , ARN sin Sentido/metabolismo , Animales , Clonación Molecular , Simulación por Computador , Secuencia Conservada , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Dolor/genética , Dolor/metabolismo , ARN sin Sentido/química , ARN Mensajero/metabolismo
13.
Biochem J ; 454(2): 333-43, 2013 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-23750504

RESUMEN

The eukaryotic DNA replication protein Mcm10 (mini-chromosome maintenance 10) associates with chromatin in early S-phase and is required for assembly and function of the replication fork protein machinery. Another essential component of the eukaryotic replication fork is Cdc45 (cell division cycle 45), which is required for both initiation and elongation of DNA replication. In the present study we characterize, for the first time, the physical and functional interactions of human Mcm10 and Cdc45. First we demonstrated that Mcm10 and Cdc45 interact in cell-free extracts. We then analysed the role of each of the Mcm10 domains: N-terminal, internal and C-terminal (NTD, ID and CTD respectively). We have detected a direct physical interaction between CTD and Cdc45 by both in vitro co-immunoprecipitation and surface plasmon resonance experiments. On the other hand, we have found that the interaction of the Mcm10 ID with Cdc45 takes place only in the presence of DNA. Furthermore, we found that the isolated ID and CTD domains are fully functional, retaining DNA-binding capability with a clear preference for bubble and fork structures, and that they both enhance Cdc45 DNA-binding affinity. The results of the present study demonstrate that human Mcm10 and Cdc45 directly interact and establish a mutual co-operation in DNA binding.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Modelos Moleculares , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Sistema Libre de Células , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Células HEK293 , Humanos , Inmunoprecipitación , Cinética , Proteínas de Mantenimiento de Minicromosoma , Simulación del Acoplamiento Molecular , Peso Molecular , Conformación de Ácido Nucleico , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Resonancia por Plasmón de Superficie
14.
Nucleic Acids Res ; 41(7): 4065-79, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23449222

RESUMEN

The eukaryotic DNA replication initiation factor Mcm10 is essential for both replisome assembly and function. Human Mcm10 has two DNA-binding domains, the conserved internal domain (ID) and the C-terminal domain (CTD), which is specific to metazoans. SIRT1 is a nicotinamide adenine dinucleotide (NAD)-dependent deacetylase that belongs to the sirtuin family. It is conserved from yeast to human and participates in cellular controls of metabolism, longevity, gene expression and genomic stability. Here we report that human Mcm10 is an acetylated protein regulated by SIRT1, which binds and deacetylates Mcm10 both in vivo and in vitro, and modulates Mcm10 stability and ability to bind DNA. Mcm10 and SIRT1 appear to act synergistically for DNA replication fork initiation. Furthermore, we show that the two DNA-binding domains of Mcm10 are modulated in distinct fashion by acetylation/deacetylation, suggesting an integrated regulation mechanism. Overall, our study highlights the importance of protein acetylation for DNA replication initiation and progression, and suggests that SIRT1 may mediate a crosstalk between cellular circuits controlling metabolism and DNA synthesis.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Sirtuina 1/metabolismo , Acetilación , Ciclo Celular , Proteínas de Ciclo Celular/química , Línea Celular , Cromatina/metabolismo , Replicación del ADN , Humanos , Proteínas de Mantenimiento de Minicromosoma , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Origen de Réplica , Sirtuina 1/antagonistas & inhibidores
15.
Nucleic Acids Res ; 39(20): 8960-71, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-21764777

RESUMEN

The p53 tumour suppressor is a transcriptional activator that controls cell fate in response to various stresses. p53 can initiate cell cycle arrest, senescence and/or apoptosis via transactivation of p53 target genes, thus preventing cancer onset. Mutations that impair p53 usually occur in the core domain and negate the p53 sequence-specific DNA binding. Moreover, these mutations exhibit a dominant negative effect on the remaining wild-type p53. Here, we report the cryo electron microscopy structure of the full-length p53 tetramer bound to a DNA-encoding transcription factor response element (RE) at a resolution of 21 A. While two core domains from both dimers of the p53 tetramer interact with DNA within the complex, the other two core domains remain available for binding another DNA site. This finding helps to explain the dominant negative effect of p53 mutants based on the fact that p53 dimers are formed co-translationally before the whole tetramer assembles; therefore, a single mutant dimer would prevent the p53 tetramer from binding DNA. The structure indicates that the Achilles' heel of p53 is in its dimer-of-dimers organization, thus the tetramer activity can be negated by mutation in only one allele followed by tumourigenesis.


Asunto(s)
ADN/química , Mutación , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética , Animales , Microscopía por Crioelectrón , ADN/ultraestructura , Ratones , Modelos Moleculares , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Elementos de Respuesta , Proteína p53 Supresora de Tumor/ultraestructura
16.
Cell Cycle ; 10(14): 2317-22, 2011 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-21636977

RESUMEN

SIRT1 is a NAD-dependent deacetylase that participates in cellular controls of gene expression, metabolism, genomic stability and anti-aging. Here we report that SIRT1 levels rise in prometaphase leading to SIRT1 global association with mitotic chromatin until telophase. Moreover, SIRT1 contributes to chromosomal condensation by mediating chromosomal loading of histone H1 and the condensin I complex. Consistently, SIRT1 knockdown led to improper condensation and overall aberrant mitosis. Our data highlight new role for SIRT1 in maintenance of chromosome stability in mitosis and suggests how diminished SIRT1 activity during aging and tumorigenesis may lead to aneuploidy and genomic instability.


Asunto(s)
Cromatina/metabolismo , Cromosomas Humanos/metabolismo , Mitosis , Sirtuina 1/metabolismo , Adenosina Trifosfatasas/metabolismo , Aneuploidia , Animales , Línea Celular Tumoral , Senescencia Celular , Inestabilidad Cromosómica , Proteínas de Unión al ADN/metabolismo , Histonas/metabolismo , Humanos , Ratones , Complejos Multiproteicos/metabolismo , Prometafase , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/fisiología , Telofase
17.
PLoS One ; 5(1): e8586, 2010 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-20062530

RESUMEN

In eukaryotes, meiotic recombination is a major source of genetic diversity, but its defects in humans lead to abnormalities such as Down's, Klinefelter's and other syndromes. Human Dmc1 (hDmc1), a RecA/Rad51 homologue, is a recombinase that plays a crucial role in faithful chromosome segregation during meiosis. The initial step of homologous recombination occurs when hDmc1 forms a filament on single-stranded (ss) DNA. However the structure of this presynaptic complex filament for hDmc1 remains unknown. To compare hDmc1-ssDNA complexes to those known for the RecA/Rad51 family we have obtained electron microscopy (EM) structures of hDmc1-ssDNA nucleoprotein filaments using single particle approach. The EM maps were analysed by docking crystal structures of Dmc1, Rad51, RadA, RecA and DNA. To fully characterise hDmc1-DNA complexes we have analysed their organisation in the presence of Ca2+, Mg2+, ATP, AMP-PNP, ssDNA and dsDNA. The 3D EM structures of the hDmc1-ssDNA filaments allowed us to elucidate the principles of their internal architecture. Similar to the RecA/Rad51 family, hDmc1 forms helical filaments on ssDNA in two states: extended (active) and compressed (inactive). However, in contrast to the RecA/Rad51 family, and the recently reported structure of hDmc1-double stranded (ds) DNA nucleoprotein filaments, the extended (active) state of the hDmc1 filament formed on ssDNA has nine protomers per helical turn, instead of the conventional six, resulting in one protomer covering two nucleotides instead of three. The control reconstruction of the hDmc1-dsDNA filament revealed 6.4 protein subunits per helical turn indicating that the filament organisation varies depending on the DNA templates. Our structural analysis has also revealed that the N-terminal domain of hDmc1 accomplishes its important role in complex formation through domain swapping between adjacent protomers, thus providing a mechanistic basis for coordinated action of hDmc1 protomers during meiotic recombination.


Asunto(s)
Proteínas de Ciclo Celular/química , ADN de Cadena Simple/química , Proteínas de Unión al ADN/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Bases , Sitios de Unión , Proteínas de Ciclo Celular/metabolismo , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/metabolismo , Electroforesis en Gel de Agar , Humanos , Microscopía Electrónica , Modelos Moleculares
18.
Curr Opin Struct Biol ; 19(2): 197-202, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19286366

RESUMEN

The p53 tumour suppressor protein has presented a challenge for structural biology for more than two decades. The complete p53 molecule has eluded numerous attempts to determine its structure, presumably owing to the intrinsic conformational flexibility that is essential to the protein's function. Recent data obtained by X-ray crystallography, NMR spectroscopy and electron microscopy provide new insight into the quaternary architecture of the whole molecule and new strategies for examining how these structures correlate with the cell and molecular biology of the 'Guardian of the Genome'.


Asunto(s)
Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteína p53 Supresora de Tumor/química , Animales , Secuencia de Bases , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Péptidos/química , Péptidos/metabolismo , Multimerización de Proteína , Proteína p53 Supresora de Tumor/metabolismo
19.
EMBO Rep ; 8(10): 925-30, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17823614

RESUMEN

The DNA replication factor minichromosome maintenance 10 (MCM10) is a conserved, abundant nuclear protein crucial for origin firing. During the transition from pre-replicative complexes to pre-initiation complexes, MCM10 recruitment to replication origins is required to provide a physical link between the MCM2-7 complex DNA helicase and DNA polymerases. Here, we report the molecular structure of human MCM10 as determined by electron microscopy and single-particle analysis. The MCM10 molecule is a ring-shaped hexamer with large central and smaller lateral channels and a system of inner chambers. This structure, together with biochemical data, suggests that this important protein uses its architecture to provide a docking module for assembly of the molecular machinery required for eukaryotic DNA replication.


Asunto(s)
Proteínas de Ciclo Celular/química , Modelos Moleculares , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , ADN/metabolismo , Replicación del ADN , Dimerización , Humanos , Microscopía Electrónica , Proteínas de Mantenimiento de Minicromosoma , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura
20.
EMBO J ; 25(21): 5191-200, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17053786

RESUMEN

p53 major tumour suppressor protein has presented a challenge for structural biology for two decades. The intact and complete p53 molecule has eluded previous attempts to obtain its structure, largely due to the intrinsic flexibility of the protein. Using ATP-stabilised p53, we have employed cryoelectron microscopy and single particle analysis to solve the first three-dimensional structure of the full-length p53 tetramer (resolution 13.7 A). The p53 molecule is a D2 tetramer, resembling a hollow skewed cube with node-like vertices of two sizes. Four larger nodes accommodate central core domains, as was demonstrated by fitting of its X-ray structure. The p53 monomers are connected via their juxtaposed N- and C-termini within smaller N/C nodes to form dimers. The dimers form tetramers through the contacts between core nodes and N/C nodes. This structure revolutionises existing concepts of p53's molecular organisation and resolves conflicting data relating to its biochemical properties. This architecture of p53 in toto suggests novel mechanisms for structural plasticity, which enables the protein to bind variably spaced DNA target sequences, essential for p53 transactivation and tumour suppressor functions.


Asunto(s)
Modelos Moleculares , Proteína p53 Supresora de Tumor/química , Microscopía por Crioelectrón/métodos , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Humanos , Unión Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA