Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Sci Rep ; 7(1): 8804, 2017 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-28821769

RESUMEN

Organisms have evolved strikingly parallel phenotypes in response to similar selection pressures suggesting that there may be shared constraints limiting the possible evolutionary trajectories. For example, the behavioral adaptation of specialist Drosophila species to specific host plants can exhibit parallel changes in their adult olfactory neuroanatomy. We investigated the genetic basis of these parallel changes by comparing gene expression during the development of the olfactory system of two specialist Drosophila species to that of four other generalist species. Our results suggest that the parallelism observed in the adult olfactory neuroanatomy of ecological specialists extends more broadly to their developmental antennal expression profiles, and to the transcription factor combinations specifying olfactory receptor neuron (ORN) fates. Additionally, comparing general patterns of variation for the antennal transcriptional profiles in the adult and developing olfactory system of the six species suggest the possibility that specific, non-random components of the developmental programs underlying the Drosophila olfactory system harbor a disproportionate amount of interspecies variation. Further examination of these developmental components may be able to inform a deeper understanding of how traits evolve.


Asunto(s)
Antenas de Artrópodos/embriología , Drosophila/embriología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Variación Genética , Organogénesis/genética , Transcriptoma , Animales , Mucosa Olfatoria/embriología , Neuronas Receptoras Olfatorias/metabolismo , Reproducibilidad de los Resultados
2.
Fly (Austin) ; 11(4): 239-252, 2017 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-28644712

RESUMEN

Carbon dioxide is an important environmental cue for many insects, regulating many behaviors including some that have direct human impacts. To further improve our understanding of how this system varies among closely related insect species, we examined both the behavioral response to CO2 as well as the transcriptional profile of key developmental regulators of CO2 sensory neurons in the olfactory system across the Drosophila genus. We found that CO2 generally evokes repulsive behavior across most of the Drosophilids we examined, but this behavior has been lost or reduced in several lineages. Comparisons of transcriptional profiles from the developing and adult antennae for subset these species suggest that behavioral differences in some species may be due to differences in the expression of the CO2 co-receptor Gr63a. Furthermore, these differences in Gr63a expression are correlated with changes in the expression of a few genes known to be involved in the development of the CO2 circuit, namely dac, an important regulator of sensilla fate for sensilla that house CO2 ORNs, and mip120, a member of the MMB/dREAM epigenetic regulatory complex that regulates CO2 receptor expression. In contrast, most of the other known structural, molecular, and developmental components of the peripheral Drosophila CO2 olfactory system seem to be well-conserved across all examined lineages. These findings suggest that certain components of CO2 sensory ORN development may be more evolutionarily labile, and may contribute to differences in CO2-evoked behavioral responses across species.


Asunto(s)
Antenas de Artrópodos/metabolismo , Conducta Animal/efectos de los fármacos , Dióxido de Carbono/farmacología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Células Receptoras Sensoriales/fisiología , Animales , Antenas de Artrópodos/efectos de los fármacos , Antenas de Artrópodos/crecimiento & desarrollo , Proteínas de Drosophila/genética , Drosophila melanogaster/efectos de los fármacos , Proteínas Nucleares/genética , Células Receptoras Sensoriales/citología , Células Receptoras Sensoriales/efectos de los fármacos , Factores de Transcripción/genética
3.
PLoS Biol ; 14(4): e1002443, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27093619

RESUMEN

During development, sensory neurons must choose identities that allow them to detect specific signals and connect with appropriate target neurons. Ultimately, these sensory neurons will successfully integrate into appropriate neural circuits to generate defined motor outputs, or behavior. This integration requires a developmental coordination between the identity of the neuron and the identity of the circuit. The mechanisms that underlie this coordination are currently unknown. Here, we describe two modes of regulation that coordinate the sensory identities of Drosophila melanogaster olfactory receptor neurons (ORNs) involved in sex-specific behaviors with the sex-specific behavioral circuit identity marker fruitless (fru). The first mode involves a developmental program that coordinately restricts to appropriate ORNs the expression of fru and two olfactory receptors (Or47b and Ir84a) involved in sex-specific behaviors. This regulation requires the chromatin modulatory protein Alhambra (Alh). The second mode relies on the signaling from the olfactory receptors through CamK and histone acetyl transferase p300/CBP to maintain ORN-specific fru expression. Our results highlight two feed-forward regulatory mechanisms with both developmentally hardwired and olfactory receptor activity-dependent components that establish and maintain fru expression in ORNs. Such a dual mechanism of fru regulation in ORNs might be a trait of neurons driving plastic aspects of sex-specific behaviors.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/genética , Proteínas del Tejido Nervioso/genética , Neuronas Receptoras Olfatorias/metabolismo , Factores de Transcripción/genética , Animales , Drosophila melanogaster , Femenino , Masculino
4.
PLoS Genet ; 12(1): e1005780, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26765103

RESUMEN

Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.


Asunto(s)
Diferenciación Celular/genética , Redes Reguladoras de Genes , Neuronas Receptoras Olfatorias , Olfato/genética , Animales , Cadherinas/genética , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/crecimiento & desarrollo , Proteínas con Homeodominio LIM/genética , Red Nerviosa/crecimiento & desarrollo , Factores de Transcripción/genética
5.
G3 (Bethesda) ; 5(12): 2809-16, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26497147

RESUMEN

The zinc-finger protein Rotund (Rn) plays a critical role in controlling the development of the fly olfactory system. However, little is known about its molecular function in vivo. Here, we added protein tags to the rn locus using CRISPR-Cas9 technology in Drosophila to investigate its subcellular localization and the genes that it regulates . We previously used a reporter construct to show that rn is expressed in a subset of olfactory receptor neuron (ORN) precursors and it is required for the diversification of ORN fates. Here, we show that tagged endogenous Rn protein is functional based on the analysis of ORN phenotypes. Using this method, we also mapped the expression pattern of the endogenous isoform-specific tags in vivo with increased precision. Comparison of the Rn expression pattern from this study with previously published results using GAL4 reporters showed that Rn is mainly present in early steps in antennal disc patterning, but not in pupal stages when ORNs are born. Finally, using chromatin immunoprecipitation, we showed a direct binding of Rotund to a previously identified regulatory element upstream of the bric-a-brac gene locus in the developing antennal disc.


Asunto(s)
Sistemas CRISPR-Cas/genética , Proteínas de Drosophila/genética , Drosophila/embriología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Bulbo Olfatorio/embriología , Bulbo Olfatorio/metabolismo , Factores de Transcripción/genética , Animales , Proteínas de Drosophila/metabolismo , Expresión Génica , Marcación de Gen , Recombinación Homóloga , Transporte de Proteínas , Edición de ARN , ARN Guía de Kinetoplastida/genética , Factores de Transcripción/metabolismo
6.
Curr Biol ; 23(24): 2481-90, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24268416

RESUMEN

BACKGROUND: Sensory neuron diversity ensures optimal detection of the external world and is a hallmark of sensory systems. An extreme example is the olfactory system, as individual olfactory receptor neurons (ORNs) adopt unique sensory identities by typically expressing a single receptor gene from a large genomic repertoire. In Drosophila, about 50 different ORN classes are generated from a field of precursor cells, giving rise to spatially restricted and distinct clusters of ORNs on the olfactory appendages. Developmental strategies spawning ORN diversity from an initially homogeneous population of precursors are largely unknown. RESULTS: Here we unravel the nested and binary logic of the combinatorial code that patterns the decision landscape of precursor states underlying ORN diversity in the Drosophila olfactory system. The transcription factor Rotund (Rn) is a critical component of this code that is expressed in a subset of ORN precursors. Addition of Rn to preexisting transcription factors that assign zonal identities to precursors on the antenna subdivides each zone and almost exponentially increases ORN diversity by branching off novel precursor fates from default ones within each zone. In rn mutants, rn-positive ORN classes are converted to rn-negative ones in a zone-specific manner. CONCLUSIONS: We provide a model describing how nested and binary changes in combinations of transcription factors could coordinate and pattern a large number of distinct precursor identities within a population to modulate the level of ORN diversity during development and evolution.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/fisiología , Receptores Odorantes/fisiología , Olfato/fisiología , Animales , Antenas de Artrópodos/citología , Antenas de Artrópodos/metabolismo , Antenas de Artrópodos/fisiología , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Modelos Biológicos , Receptores Odorantes/metabolismo , Olfato/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA