Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Oper Dent ; 49(2): 136-156, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349819

RESUMEN

OBJECTIVES: To evaluate the effect of the different radiant exposures from a multipeak light curing unit on the physical and mechanical properties of flowable and high-viscosity bulk-fill resin-based composites (RBC). METHODS: Five flowable bulk-fill RBCs (Tetric N-Flow Bulk-fill, Ivoclar Vivadent; Filtek Bulk Fill Flow, 3M Oral Care; Opus Bulk Fill Flow APS, FGM; Admira Fusion x-base, Voco and; and SDR Plus Bulk Fill Flowable, Dentsply Sirona) and five high-viscosity bulk-fill RBCs (Tetric N-Ceram Bulk-fill, Ivoclar Vivadent; Filtek One Bulk Fill, 3M Oral Care; Opus Bulk Fill APS, FGM; Admira Fusion x-tra, Voco; and SonicFill 2, Kerr) were photo-cured using a VALO Cordless light (Ultradent) for 10, 20, and 40 seconds at an irradiance of 1200, 800, or 400 mW/cm2, resulting in the delivery of 4, 8, 12, 16, 24, 32, or 48 J/cm2. Post-gel shrinkage (Shr) was calculated using strain-gauge test. The degree of conversion (DC, %) was calculated using FTIR. Knoop hardness (KH, N/mm2) and elastic modulus (E, MPa) were measured at the top and bottom surfaces. Logarithmic regressions between the radiant exposures and mechanical properties were calculated. Radiodensity was calculated using digital radiographs. Data of Shr and radiodensity were analyzed using two-way analysis of variance (ANOVA), and the DC, KH, and E data were analyzed with two-way ANOVA using split-plot repeated measurement tests followed by the Tukey test (a = 0.05). RESULTS: Delivering higher radiant exposures produced higher Shr values (p<0.001) and higher DC values (R2=0.808-0.922; R2=0.648-0.914, p<0.001), KH (R2=0.707-0.952; R2=0.738-0.919; p<0.001), and E (R2=0.501-0.925; R2=0.823-0.919; p<0.001) values for the flowable and high-viscosity RBCs respectively. Lower KH, E and Shr were observed for the flowable bulk-fill RBCs. All bulk-fill RBCs had a radiopacity level greater than the 4-mm thick aluminum step wedge. The radiant exposure did not affect the radiopacity. CONCLUSION: The Shr, DC, KH, and E values were highly correlated to the radiant exposure delivered to the RBCs. The combination of the higher irradiance for longer exposure time that resulted in radiant exposure between 24 J/cm2 to 48 J/cm2 produced better results than delivering 400 mW/cm2 for 40 s (16 J/cm2), and 800 mW/cm2 for 20 seconds (16 J/cm2) or 1200 mW/cm2 for 10 seconds (12 J/cm2). All the bulk-fill RBCs were sufficiently radiopaque compared to 4 mm of aluminum.


Asunto(s)
Resinas Acrílicas , Aluminio , Resinas Compuestas , Metacrilatos , Poliuretanos , Siloxanos , Viscosidad , Ensayo de Materiales , Polimerizacion , Materiales Dentales , Propiedades de Superficie
2.
Oper Dent ; 47(1): 64-75, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-35090036

RESUMEN

OBJECTIVES: To measure the proximal contact force in newtons (N) between incremental and bulk fill class II resin composite restorations and implant molar teeth or adjacent premolar teeth with simulated periodontal ligament. METHODS: The model used was created with a typodont first molar tooth with two bilateral occlusal-proximal class II cavities, an adjacent tooth simulating an implanted molar tooth (Titamax CM, Neodent, Curtiba, PR, Brazil) and a premolar with simulated periodontal ligament. Two resin composite restorative techniques were used: Inc-Z350XT, (Filtek Z350, 3M Oral Care, St. Paul, MN, USA) inserted incrementally and Bulk-OPUS, (Opus Bulk Fill APS, FGM, Joinville, SC, Brazil) high viscosity bulk fill resin composite (n=10). As a control, a typodont having intact teeth without restorations was used. After the restorative procedure, each specimen was radiographed using a digital system (Dürr Dental, Bietigheim-Bissingen, Germany). The proximal contact force (N) was measured using dental floss with a microtensile machine (Microtensile ODEME, Luzerna, SC, Brazil). The specimens were then subjected to mechanical fatigue cycling to simulate 5 years of aging. All the parameters were measured after aging. The X-rays were blindly qualitatively analyzed by two operators to identify the loss of proximal contact. One-way ANOVA was used for comparing the initial contact force between restored and intact teeth. Two-way ANOVA followed by Tukey testing was performed for contact area data and for the contact force/contact area ratio. The proximal contact force data were analyzed using one-way repeated measurement ANOVA followed by Tukey testing (α=0.05). The X-ray proximal contact analyses were described by the frequency. RESULTS: The initial proximal contact force was similar for intact and restored teeth. The contact force and contact area with the molar were significantly higher than with the premolar; however the contact force/contact area ratio was similar for all tested groups. The bulk fill technique showed a contact force similar to the incremental filling technique. Fatigue resulted in a significant reduction in the proximal contact force (p<0.001), irrespective of the region analyzed or restorative material used. The digital X-rays detected no alteration in the proximal contact after occlusal fatigue. CONCLUSIONS: Larger contact area resulted in higher proximal contact force. Proximal contact force decreased with 5 years of simulated occlusal fatigue. The bulk fill technique showed a proximal contact force similar to that of the incremental filling technique.


Asunto(s)
Resinas Compuestas , Materiales Dentales , Diente Premolar , Brasil , Resinas Compuestas/uso terapéutico , Restauración Dental Permanente/métodos , Ensayo de Materiales , Diente Molar
3.
Oper Dent ; 46(2): 197-207, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34192325

RESUMEN

OBJECTIVES: To analyze the effect of the porosity caused by incremental and bulk resin composite filling techniques using low- and high-viscosity composite resins on the biomechanical performance of root-treated molars. METHODS: Forty intact molars received standardized mesio-occlusal-distal (MOD) cavity preparation, were root treated, and randomly divided into four groups with different filling techniques (n=10). The first involved two incremental filling techniques using VIT/Z350XT, a nanofilled composite resin (Filtek Z350XT, 3M ESPE) associated with a resin-modified glass ionomer cement, and resin-modified glass ionomer cement (RMGIC; Vitremer, 3M ESPE) for filling the pulp chamber. The second involved TPH/VIT, a microhybrid composite resin TPH3 Spectrum associated with Vitremer. The third and fourth involved two bulk-fill composite resins: SDR/TPH, a low-viscosity resin composite (Surefill SDR flow, Dentsply) associated with TPH3 Spectrum, and POST, a high-viscosity bulk-fill resin composite (Filtek Bulk Fill Posterior, 3M ESPE). The volume of the porosity inside the restoration was calculated by micro-CT. The cusp deformation caused by polymerization shrinkage was calculated using the strain-gauge and micro-CT methods. The cusp deformation was also calculated during 100 N occlusal loading and loading to fracture. The fracture resistance and fracture mode were recorded. Data were analyzed by one-way analysis of variance and Tukey test. The fracture mode was analyzed by the χ2 test. The volume of the porosity was correlated with the cusp deformation, fracture resistance, and fracture mode (a=0.05). RESULTS: Incremental filling techniques associated with RMGIC resulted in a significantly higher porosity than that of both bulk-fill techniques. However, no significant difference was found among the groups for the fracture resistance, fracture mode, and cusp deformation, regardless of the measurement time and method used. No correlation was observed between the volume of the porosity and all tested parameters. CONCLUSIONS: The porosity of the restorations had no influence on the cuspal deformation, fracture resistance, or fracture mode. The use of the RMGIC for filling the pulp chamber associated with incremental composite resins resulted in similar biomechanical performance to that of the flowable or regular paste bulk-fill composite resin restorations of root-treated molars.


Asunto(s)
Resinas Compuestas , Preparación de la Cavidad Dental , Restauración Dental Permanente , Ensayo de Materiales , Diente Molar , Polimerizacion , Porosidad
4.
Oper Dent ; 44(6): 625-636, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30702411

RESUMEN

OBJECTIVE: To analyze the shrinkage stress, bonding interaction, and failure modes between different low-viscosity bulk fill resin composites and conventional resin composites produced by the same manufacturer or a high-viscosity bulk fill resin composite used to restore the occlusal layer in posterior teeth. METHODS & MATERIALS: Three low-viscosity bulk fill resin composites were associated with the conventional resin composites made by the same manufacturers or with a high-viscosity bulk fill resin composite, resulting in six groups (n=10). The bonding interaction between resin composites was tested by assessing the microshear bond strength (µSBS). The samples were thermocycled and were tested with 1-mm/min crosshead speed, and the failure mode was evaluated. The post-gel shrinkage (Shr) of all the resin composites was measured using a strain gauge (n=10). The modulus of elasticity (E) and the hardness (KHN) were measured using the Knoop hardness test. Two-dimensional finite element models were created for analyzing the stress caused by shrinkage and contact loading. The µSBS, Shr, E, and KHN data were analyzed using the Student t-test and one-way analysis of variance. The failure mode data were subjected to chi-square analysis (α=0.05). The stress distribution was analyzed qualitatively. RESULTS: No significant difference was verified for µSBS between low-viscosity bulk fill resin composites and conventional or high-viscosity bulk fill composites in terms of restoring the occlusal layer (p=0.349). Cohesive failure of the low-viscosity bulk fill resin composites was the most frequent failure mode. The Shr, E, and KHN varied between low-viscosity and high-viscosity resin composites. The use of high-viscosity bulk fill resin composites on the occlusal layer reduced the stress at the enamel interface on the occlusal surface. CONCLUSIONS: The use of high-viscosity bulk fill resin composites as an occlusal layer for low-viscosity bulk fill resin composites to restore the posterior teeth can be a viable alternative, as it shows a similar bonding interaction to conventional resin composites as well as lower shrinkage stress at the enamel margin.


Asunto(s)
Resinas Compuestas , Esmalte Dental , Dureza , Humanos , Ensayo de Materiales , Polimerizacion , Viscosidad
5.
Oper Dent ; 44(3): 289-301, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30444687

RESUMEN

OBJECTIVES: To evaluate the effect of light curing bulk fill resin composite restorations on the increase in the temperature of the pulp chamber both with and without a simulated pulpal fluid flow. METHODS AND MATERIALS: Forty extracted human molars received a flat occlusal cavity, leaving approximately 2 mm of dentin over the pulp. The teeth were restored using a self-etch adhesive system (Clearfil SE Bond, Kuraray) and two different bulk fill resin composites: a flowable (SDR, Dentsply) and a regular paste (AURA, SDI) bulk fill. The adhesive was light cured for 20 seconds, SDR was light cured for 20 seconds, and AURA was light cured for 40 seconds using the Bluephase G2 (Ivoclar Vivadent) or the VALO Cordless (Ultradent) in the standard output power mode. The degree of conversion (DC) at the top and bottom of the bulk fill resin composite was assessed using Fourier-Transform Infra Red spectroscopy. The temperature in the pulp chamber when light curing the adhesive system and resin composite was measured using a J-type thermocouple both with and without the presence of a simulated microcirculation of 1.0-1.4 mL/min. Data were analyzed using Student t-tests and two-way and three-way analyses of variance (α=0.05 significance level). RESULTS: The irradiance delivered by the light-curing units (LCUs) was greatest close to the top sensor of the MARC resin calibrator (BlueLight Analytics) and lowest after passing through the 4.0 mm of resin composite plus 2.0 mm of dentin. In general, the Bluephase G2 delivered a higher irradiance than did the VALO Cordless. The resin composite, LCU, and region all influenced the degree of cure. The simulated pulpal microcirculation significantly reduced the temperature increase. The greatest temperature rise occurred when the adhesive system was light cured. The Bluephase G2 produced a rise of 6°C, and the VALO Cordless produced a lower temperature change (4°C) when light curing the adhesive system for 20 seconds without pulpal microcirculation. Light curing SDR produced the greatest exothermic reaction. CONCLUSIONS: Using simulated pulpal microcirculation resulted in lower temperature increases. The flowable composite (SDR) allowed more light transmission and had a higher degree of conversion than did the regular paste (AURA). The greatest temperature rise occurred when light curing the adhesive system alone.


Asunto(s)
Resinas Compuestas , Luces de Curación Dental , Dentina , Humanos , Ensayo de Materiales , Microcirculación , Temperatura
6.
Oper Dent ; 43(1): 81-89, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28976839

RESUMEN

OBJECTIVES: To evaluate the effect of flowable bulk-fill or conventional composite resin on bond strength and stress distribution in flat or mesio-occlusal-distal (MOD) cavity preparations using the microtensile bond strength (µTBS) test. METHODS: Forty human molars were divided into two groups and received either standardized MOD or flat cavity preparations. Restorations were made using the conventional composite resin Z350 (Filtek Z350XT, 3M-ESPE, St Paul, MN, USA) or flowable bulk-fill (FBF) composite resin (Filtek Bulk Fill Flowable, 3M-ESPE). Postgel shrinkage was measured using the strain gauge technique (n=10). The Z350 buildup was made in two increments of 2.0 mm, and the FBF was made in a single increment of 4.0 mm. Six rectangular sticks were obtained for each tooth, and each section was used for µTBS testing at 1.0 mm/min. Polymerization shrinkage was modeled using postgel shrinkage data. The µTBS data were analyzed statistically using a two-way analysis of variance (ANOVA), and the postgel shrinkage data were analyzed using a one-way ANOVA with Tukey post hoc test. The failure modes were analyzed using a chi-square test (α=0.05). RESULTS: Our results show that both the type of cavity preparation and the composite resin used affect the bond strength and stress distribution. The Z350 composite resin had a higher postgel shrinkage than the FBF composite resin. The µTBS of the MOD preparation was influenced by the type of composite resin used. Irrespective of composite resin, flat cavity preparations resulted in higher µTBS than MOD preparations ( p<0.001). Specifically, in flat-prepared cavities, FBF composite resin had a similar µTBS relative to Z350 composite resin. However, in MOD-prepared cavities, those with FBF composite resin had higher µTBS values than those with Z350 composite resin. Adhesive failure was prevalent for all tested groups. The MOD preparation resulted in higher shrinkage stress than the flat preparation, irrespective of composite resin. For MOD-prepared cavities, FBF composite resin resulted in lower stress than Z350 composite resin. However, no differences were found for flat-prepared cavities. CONCLUSIONS: FBF composite resin had lower shrinkage stress than Z350 conventional composite resin. The µTBS of the MOD preparation was influenced by the composite resin type. Flat cavity preparations had no influence on stress and µTBS. However, for MOD preparation, composite resin with higher shrinkage stress resulted in lower µTBS values.


Asunto(s)
Resinas Compuestas/uso terapéutico , Preparación de la Cavidad Dental/métodos , Recubrimiento Dental Adhesivo/efectos adversos , Recubrimiento Dental Adhesivo/métodos , Preparación de la Cavidad Dental/efectos adversos , Análisis del Estrés Dental , Humanos , Técnicas In Vitro , Resistencia a la Tracción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA