Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Tree Physiol ; 44(10)2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190893

RESUMEN

Given the pressing challenges posed by climate change, it is crucial to develop a deeper understanding of the impacts of escalating drought and heat stress on terrestrial ecosystems and the vital services they offer. Soil and plant water potential play a pivotal role in governing the dynamics of water within ecosystems and exert direct control over plant function and mortality risk during periods of ecological stress. However, existing observations of water potential suffer from significant limitations, including their sporadic and discontinuous nature, inconsistent representation of relevant spatio-temporal scales and numerous methodological challenges. These limitations hinder the comprehensive and synthetic research needed to enhance our conceptual understanding and predictive models of plant function and survival under limited moisture availability. In this article, we present PSInet (PSI-for the Greek letter Ψ used to denote water potential), a novel collaborative network of researchers and data, designed to bridge the current critical information gap in water potential data. The primary objectives of PSInet are as follows. (i) Establishing the first openly accessible global database for time series of plant and soil water potential measurements, while providing important linkages with other relevant observation networks. (ii) Fostering an inclusive and diverse collaborative environment for all scientists studying water potential in various stages of their careers. (iii) Standardizing methodologies, processing and interpretation of water potential data through the engagement of a global community of scientists, facilitated by the dissemination of standardized protocols, best practices and early career training opportunities. (iv) Facilitating the use of the PSInet database for synthesizing knowledge and addressing prominent gaps in our understanding of plants' physiological responses to various environmental stressors. The PSInet initiative is integral to meeting the fundamental research challenge of discerning which plant species will thrive and which will be vulnerable in a world undergoing rapid warming and increasing aridification.


Asunto(s)
Cambio Climático , Ecosistema , Agua , Suelo/química , Sequías , Fenómenos Fisiológicos de las Plantas , Plantas
2.
Tree Physiol ; 44(8)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39041710

RESUMEN

Increases in hydrological extremes, including drought, are expected for Amazon forests. A fundamental challenge for predicting forest responses lies in identifying ecological strategies which underlie such responses. Characterization of species-specific hydraulic strategies for regulating water-use, thought to be arrayed along an 'isohydric-anisohydric' spectrum, is a widely used approach. However, recent studies have questioned the usefulness of this classification scheme, because its metrics are strongly influenced by environments, and hence can lead to divergent classifications even within the same species. Here, we propose an alternative approach positing that individual hydraulic regulation strategies emerge from the interaction of environments with traits. Specifically, we hypothesize that the vertical forest profile represents a key gradient in drought-related environments (atmospheric vapor pressure deficit, soil water availability) that drives divergent tree water-use strategies for coordinated regulation of stomatal conductance (gs) and leaf water potentials (ΨL) with tree rooting depth, a proxy for water availability. Testing this hypothesis in a seasonal eastern Amazon forest in Brazil, we found that hydraulic strategies indeed depend on height-associated environments. Upper canopy trees, experiencing high vapor pressure deficit (VPD), but stable soil water access through deep rooting, exhibited isohydric strategies, defined by little seasonal change in the diurnal pattern of gs and steady seasonal minimum ΨL. In contrast, understory trees, exposed to less variable VPD but highly variable soil water availability, exhibited anisohydric strategies, with fluctuations in diurnal gs that increased in the dry season along with increasing variation in ΨL. Our finding that canopy height structures the coordination between drought-related environmental stressors and hydraulic traits provides a basis for preserving the applicability of the isohydric-to-anisohydric spectrum, which we show here may consistently emerge from environmental context. Our work highlights the importance of understanding how environmental heterogeneity structures forest responses to climate change, providing a mechanistic basis for improving models of tropical ecosystems.


Asunto(s)
Bosques , Árboles , Agua , Agua/metabolismo , Agua/fisiología , Árboles/fisiología , Brasil , Sequías , Transpiración de Plantas/fisiología , Suelo/química , Hojas de la Planta/fisiología
3.
Sci Total Environ ; 924: 171695, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38485025

RESUMEN

Increasing aridity associated with climate change may lead to the crossing of critical ecosystem thresholds in drylands, compromising ecosystem services for millions of people. In this context, finding tools to detect at early stages the effects of increasing aridity on ecosystems is extremely urgent to avoid irreversible damage. Here, we assess shifts in plant community functional structure along a spatial aridity gradient in tropical dryland (Brazilian Caatinga), to select the most appropriate plant functional groups as ecological indicators likely useful to predict temporal ecosystem trajectories in response to aridity. We identified seven plant functional groups based on 13 functional traits associated with plant establishment, defense, regeneration, and dispersal, whose relative abundances changed, linearly and non-linearly, with increasing aridity, showing either increasing or decreasing trends. Of particular importance is the increase in abundance of plants with high chemical defense and Crassulacean Acid Metabolism (CAM) photosynthetic pathway, with increasing aridity. We propose the use of these functional groups as early warning indicators to detect aridity impacts on these dryland ecosystems and shifts in ecosystem functioning. This information can also be used in the elaboration of mitigation and ecological restoration measures to prevent and revert current and future climate change impacts on tropical dry forests.


Asunto(s)
Ecosistema , Bosques , Humanos , Plantas/metabolismo , Cambio Climático , Brasil
4.
Nature ; 626(7999): 555-564, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38356065

RESUMEN

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Asunto(s)
Bosques , Calentamiento Global , Árboles , Sequías/estadística & datos numéricos , Retroalimentación , Calentamiento Global/prevención & control , Calentamiento Global/estadística & datos numéricos , Árboles/crecimiento & desarrollo , Incendios Forestales/estadística & datos numéricos , Incertidumbre , Restauración y Remediación Ambiental/tendencias
5.
New Phytol ; 240(4): 1405-1420, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37705460

RESUMEN

Atmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast-response variables (such as canopy water potential and stomatal conductance) may mediate longer-term changes in forest structure and function in response to climate change. We used two tropical rainforest sites with different temperatures and vapour pressure deficits (VPD), but nonlimiting soil water supply, to assess the impact of evaporative demand on ecophysiological function and forest structure. Common species between sites allowed us to test the extent to which species composition, relative abundance and intraspecific variability contributed to site-level differences. The highest VPD site had lower midday canopy water potentials, canopy conductance (gc ), annual transpiration, forest stature, and biomass, while the transpiration rate was less sensitive to changes in VPD; it also had different height-diameter allometry (accounting for 51% of the difference in biomass between sites) and higher plot-level wood density. Our findings suggest that increases in VPD, even in the absence of soil water limitation, influence fast-response variables, such as canopy water potentials and gc , potentially leading to longer-term changes in forest stature resulting in reductions in biomass.


Asunto(s)
Hojas de la Planta , Suelo , Suelo/química , Hojas de la Planta/fisiología , Bosque Lluvioso , Presión de Vapor , Agua/fisiología , Abastecimiento de Agua , Transpiración de Plantas/fisiología , Árboles/fisiología
6.
Tree Physiol ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37584458

RESUMEN

Lianas (woody vines) are important components of tropical forests and are known to compete with host trees for resources, decrease tree growth and increase tree mortality. Given the observed increases in liana abundance in some forests and their impacts on forest function, an integrated understanding of carbon dynamics of lianas and liana-infested host trees is critical for improved prediction of tropical forest responses to climate change. Non-structural carbohydrates (NSC) are the main substrate for plant metabolism (e.g., growth, respiration), and have been implicated in enabling tree survival under environmental stress, but little is known of how they vary among life-forms or of how liana infestation impacts host tree NSC. We quantified stem total NSC (NSC) concentrations and its fractions (starch and soluble sugars) in trees without liana infestation, trees with more than 50% of the canopy covered by lianas, and the lianas infesting those trees. We hypothesized that i) liana infestation depletes NSC storage in host trees by reducing carbon assimilation due to competition for resources; ii) trees and lianas, which greatly differ in functional traits related to water transport and carbon uptake, would also have large differences in NSC storage, and that As water availability has a significant role in NSC dynamics of Amazonian tree species, we tested these hypotheses within a moist site in western Amazonia and a drier forest site in southern Amazonia. We did not find any difference in NSC, starch or soluble sugar concentrations between infested and non-infested trees, in either site. This result suggests that negative liana impact on trees may be mediated through mechanisms other than depletion of host tree NSC concentrations. We found lianas have higher stem NSC and starch than trees in both sites. The consistent differences in starch concentrations, a long term NSC reserve, between life forms across sites reflect differences in carbon gain and use of lianas and trees. Soluble sugar concentrations were higher in lianas than in trees in the moist site but indistinguishable between life forms in the dry site. The lack of difference in soluble sugars between trees and lianas in the dry site emphasize the importance of this NSC fraction for plant metabolism of plants occurring in water limited environments. Abstract in Portuguese and Spanish are available in the supplementary material.

7.
Proc Natl Acad Sci U S A ; 120(33): e2301255120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549286

RESUMEN

Forest-savanna boundaries are ecotones that support complex ecosystem functions and are sensitive to biotic/abiotic perturbations. What drives their distribution today and how it may shift in the future are open questions. Feedbacks among climate, fire, herbivory, and land use are known drivers. Here, we show that alternating seasonal drought and waterlogging stress favors the dominance of savanna-like ecosystems over forests. We track the seasonal water-table depth as an indicator of water stress when too deep and oxygen stress when too shallow and map forest/savanna occurrence within this double-stress space in the neotropics. We find that under a given annual precipitation, savannas are favored in landscape positions experiencing double stress, which is more common as the dry season strengthens (climate driver) but only found in waterlogged lowlands (terrain driver). We further show that hydrological changes at the end of the century may expose some flooded forests to savanna expansion, affecting biodiversity and soil carbon storage. Our results highlight the importance of land hydrology in understanding/predicting forest-savanna transitions in a changing world.


Asunto(s)
Ecosistema , Pradera , Sequías , Bosques , Clima , Árboles
8.
Nature ; 617(7959): 111-117, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100901

RESUMEN

Tropical forests face increasing climate risk1,2, yet our ability to predict their response to climate change is limited by poor understanding of their resistance to water stress. Although xylem embolism resistance thresholds (for example, [Formula: see text]50) and hydraulic safety margins (for example, HSM50) are important predictors of drought-induced mortality risk3-5, little is known about how these vary across Earth's largest tropical forest. Here, we present a pan-Amazon, fully standardized hydraulic traits dataset and use it to assess regional variation in drought sensitivity and hydraulic trait ability to predict species distributions and long-term forest biomass accumulation. Parameters [Formula: see text]50 and HSM50 vary markedly across the Amazon and are related to average long-term rainfall characteristics. Both [Formula: see text]50 and HSM50 influence the biogeographical distribution of Amazon tree species. However, HSM50 was the only significant predictor of observed decadal-scale changes in forest biomass. Old-growth forests with wide HSM50 are gaining more biomass than are low HSM50 forests. We propose that this may be associated with a growth-mortality trade-off whereby trees in forests consisting of fast-growing species take greater hydraulic risks and face greater mortality risk. Moreover, in regions of more pronounced climatic change, we find evidence that forests are losing biomass, suggesting that species in these regions may be operating beyond their hydraulic limits. Continued climate change is likely to further reduce HSM50 in the Amazon6,7, with strong implications for the Amazon carbon sink.


Asunto(s)
Carbono , Bosques , Árboles , Clima Tropical , Biomasa , Carbono/metabolismo , Sequías , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Xilema/metabolismo , Lluvia , Cambio Climático , Secuestro de Carbono , Estrés Fisiológico , Deshidratación
10.
Philos Trans R Soc Lond B Biol Sci ; 378(1867): 20210075, 2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36373925

RESUMEN

There is high potential for ecosystem restoration across tropical savannah-dominated regions, but the benefits that could be gained from this restoration are rarely assessed. This study focuses on the Brazilian Cerrado, a highly species-rich savannah-dominated region, as an exemplar to review potential restoration benefits using three metrics: net biomass gains, plant species richness and ability to connect restored and native vegetation. Localized estimates of the most appropriate restoration vegetation type (grassland, savannah, woodland/forest) for pasturelands are produced. Carbon sequestration potential is significant for savannah and woodland/forest restoration in the seasonally dry tropics (net biomass gains of 58.2 ± 37.7 and 130.0 ± 69.4 Mg ha-1). Modelled restoration species richness gains were highest in the central and south-east of the Cerrado for savannahs and grasslands, and in the west and north-west for woodlands/forests. The potential to initiate restoration projects across the whole of the Cerrado is high and four hotspot areas are identified. We demonstrate that landscape restoration across all vegetation types within heterogeneous tropical savannah-dominated regions can maximize biodiversity and carbon gains. However, conservation of existing vegetation is essential to minimizing the cost and improving the chances of restoration success. This article is part of the theme issue 'Understanding forest landscape restoration: reinforcing scientific foundations for the UN Decade on Ecosystem Restoration'.


Asunto(s)
Ecosistema , Pradera , Bosques , Biodiversidad , Secuestro de Carbono
11.
New Phytol ; 236(5): 1936-1950, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36128644

RESUMEN

Plant-soil feedbacks (PSFs) underlying grassland plant richness and productivity are typically coupled with nutrient availability; however, we lack understanding of how restoration measures to increase plant diversity might affect PSFs. We examined the roles of sward disturbance, seed addition and land-use intensity (LUI) on PSFs. We conducted a disturbance and seed addition experiment in 10 grasslands along a LUI gradient and characterized plant biomass and richness, soil microbial biomass, community composition and enzyme activities. Greater plant biomass at high LUI was related to a decrease in the fungal to bacterial ratios, indicating highly productive grasslands to be dominated by bacteria. Lower enzyme activity per microbial biomass at high plant species richness indicated a slower carbon (C) cycling. The relative abundance of fungal saprotrophs decreased, while pathogens increased with LUI and disturbance. Both fungal guilds were negatively associated with plant richness, indicating the mechanisms underlying PSFs depended on LUI. We show that LUI and disturbance affect fungal functional composition, which may feedback on plant species richness by impeding the establishment of pathogen-sensitive species. Therefore, we highlight the need to integrate LUI including its effects on PSFs when planning for practices that aim to optimize plant diversity and productivity.


Asunto(s)
Biodiversidad , Pradera , Plantas , Biomasa , Suelo , Bacterias , Ecosistema
12.
Oecologia ; 199(1): 205-215, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35526202

RESUMEN

Environmental heterogeneity is a key component in explaining the megadiversity of tropical forests. Despite its importance, knowledge about local drivers of environmental heterogeneity remains a challenge for ecologists. In Neotropical forests, epiphytic tank bromeliads store large amounts of water and nutrients in the tree canopy, and their tank overflow may create nutrient-rich patches in the soil. However, the effects of this nutrient flux on environmental heterogeneity and plant community structure in the understory remain unexplored. In a Brazilian coastal sandy forest, we investigated the effects of the presence of epiphytic tank bromeliads on throughfall chemistry, soil chemistry, soil litter biomass, light, and seedling community structure. In the presence of epiphytic tank bromeliads, the throughfall nitrogen concentration increased twofold, the throughfall phosphorus concentration increased threefold, and the soil patches had a 3.96% higher pH, a 50% higher calcium concentration, and 11.88% less light. By altering the availability of soil resources and conditions, the presence of bromeliads partially shifted the available niche spaces for plant species and indirectly affected the structure of the seedling communities, decreasing their diversity, density, and biomass. For the first time, we showed that the presence of tank bromeliads in the canopy can create characteristic soil patches in the understory, affecting the structure of seedling communities via fertilization. Our results reveal a novel local driver of environmental heterogeneity, reinforcing and expanding the key role of tank bromeliads both in nutrient cycling and plant community structuring of Neotropical coastal sandy forests.


Asunto(s)
Plantones , Suelo , Bosques , Fósforo , Suelo/química , Árboles
13.
Nat Commun ; 13(1): 917, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35177619

RESUMEN

Predictions of the magnitude and timing of leaf phenology in Amazonian forests remain highly controversial. Here, we use terrestrial LiDAR surveys every two weeks spanning wet and dry seasons in Central Amazonia to show that plant phenology varies strongly across vertical strata in old-growth forests, but is sensitive to disturbances arising from forest fragmentation. In combination with continuous microclimate measurements, we find that when maximum daily temperatures reached 35 °C in the latter part of the dry season, the upper canopy of large trees in undisturbed forests lost plant material. In contrast, the understory greened up with increased light availability driven by the upper canopy loss, alongside increases in solar radiation, even during periods of drier soil and atmospheric conditions. However, persistently high temperatures in forest edges exacerbated the upper canopy losses of large trees throughout the dry season, whereas the understory in these light-rich environments was less dependent on the altered upper canopy structure. Our findings reveal a strong influence of edge effects on phenological controls in wet forests of Central Amazonia.


Asunto(s)
Bosques , Hojas de la Planta/fisiología , Árboles/fisiología , Brasil , Luz , Microclima , Estaciones del Año , Suelo/química , Agua/química
14.
Sci Rep ; 12(1): 1588, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35091635

RESUMEN

Native vegetation across the Brazilian Cerrado is highly heterogeneous and biodiverse and provides important ecosystem services, including carbon and water balance regulation, however, land-use changes have been extensive. Conservation and restoration of native vegetation is essential and could be facilitated by detailed landcover maps. Here, across a large case study region in Goiás State, Brazil (1.1 Mha), we produced physiognomy level maps of native vegetation (n = 8) and other landcover types (n = 5). Seven different classification schemes using different combinations of input satellite imagery were used, with a Random Forest classifier and 2-stage approach implemented within Google Earth Engine. Overall classification accuracies ranged from 88.6-92.6% for native and non-native vegetation at the formation level (stage-1), and 70.7-77.9% for native vegetation at the physiognomy level (stage-2), across the seven different classifications schemes. The differences in classification accuracy resulting from varying the input imagery combination and quality control procedures used were small. However, a combination of seasonal Sentinel-1 (C-band synthetic aperture radar) and Sentinel-2 (surface reflectance) imagery resulted in the most accurate classification at a spatial resolution of 20 m. Classification accuracies when using Landsat-8 imagery were marginally lower, but still reasonable. Quality control procedures that account for vegetation burning when selecting vegetation reference data may also improve classification accuracy for some native vegetation types. Detailed landcover maps, produced using freely available satellite imagery and upscalable techniques, will be important tools for understanding vegetation functioning at the landscape scale and for implementing restoration projects.

15.
Glob Chang Biol ; 28(8): 2622-2638, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35007364

RESUMEN

Understanding how evolutionary history and the coordination between trait trade-off axes shape the drought tolerance of trees is crucial to predict forest dynamics under climate change. Here, we compiled traits related to drought tolerance and the fast-slow and stature-recruitment trade-off axes in 601 tropical woody species to explore their covariations and phylogenetic signals. We found that xylem resistance to embolism (P50) determines the risk of hydraulic failure, while the functional significance of leaf turgor loss point (TLP) relies on its coordination with water use strategies. P50 and TLP exhibit weak phylogenetic signals and substantial variation within genera. TLP is closely associated with the fast-slow trait axis: slow species maintain leaf functioning under higher water stress. P50 is associated with both the fast-slow and stature-recruitment trait axes: slow and small species exhibit more resistant xylem. Lower leaf phosphorus concentration is associated with more resistant xylem, which suggests a (nutrient and drought) stress-tolerance syndrome in the tropics. Overall, our results imply that (1) drought tolerance is under strong selective pressure in tropical forests, and TLP and P50 result from the repeated evolutionary adaptation of closely related taxa, and (2) drought tolerance is coordinated with the ecological strategies governing tropical forest demography. These findings provide a physiological basis to interpret the drought-induced shift toward slow-growing, smaller, denser-wooded trees observed in the tropics, with implications for forest restoration programmes.


Asunto(s)
Sequías , Xilema , Bosques , Filogenia , Hojas de la Planta/fisiología , Clima Tropical , Madera
16.
J Exp Bot ; 73(3): 939-952, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34545938

RESUMEN

Addressing the intraspecific variability of functional traits helps understand how climate change might influence the distribution of organismal traits across environments, but this is notably understudied in the Amazon, especially for plant hydraulic traits commonly used to project drought responses. We quantified the intraspecific trait variability of leaf mass per area, wood density, and xylem embolism resistance for two dominant central Amazonian tree species, along gradients of water and light availability, while accounting for tree age and height. Intraspecific variability in hydraulic traits was high, with within-species variability comparable to the whole-community variation. Hydraulic trait variation was modulated mostly by the hydrological environment, with higher embolism resistance of trees growing on deep-water-table plateaus compared with shallow-water-table valleys. Intraspecific variability of leaf mass per area and wood density was mostly modulated by intrinsic factors and light. The different environmental and intrinsic drivers of variation among and within individuals lead to an uncoupled coordination among carbon acquisition/conservation and water-use traits. Our findings suggest multivariate ecological strategies driving tropical tree distributions even within species, and reflect differential within-population sensitivities along environmental gradients. Therefore, intraspecific trait variability must be considered for accurate predictions of the responses of tropical forests to climate change.


Asunto(s)
Árboles , Xilema , Sequías , Bosques , Hojas de la Planta/fisiología , Árboles/fisiología , Agua , Xilema/fisiología
17.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-34845017

RESUMEN

One-third of all Neotropical forests are secondary forests that regrow naturally after agricultural use through secondary succession. We need to understand better how and why succession varies across environmental gradients and broad geographic scales. Here, we analyze functional recovery using community data on seven plant characteristics (traits) of 1,016 forest plots from 30 chronosequence sites across the Neotropics. By analyzing communities in terms of their traits, we enhance understanding of the mechanisms of succession, assess ecosystem recovery, and use these insights to propose successful forest restoration strategies. Wet and dry forests diverged markedly for several traits that increase growth rate in wet forests but come at the expense of reduced drought tolerance, delay, or avoidance, which is important in seasonally dry forests. Dry and wet forests showed different successional pathways for several traits. In dry forests, species turnover is driven by drought tolerance traits that are important early in succession and in wet forests by shade tolerance traits that are important later in succession. In both forests, deciduous and compound-leaved trees decreased with forest age, probably because microclimatic conditions became less hot and dry. Our results suggest that climatic water availability drives functional recovery by influencing the start and trajectory of succession, resulting in a convergence of community trait values with forest age when vegetation cover builds up. Within plots, the range in functional trait values increased with age. Based on the observed successional trait changes, we indicate the consequences for carbon and nutrient cycling and propose an ecologically sound strategy to improve forest restoration success.


Asunto(s)
Conservación de los Recursos Naturales , Bosques , Modelos Biológicos , Clima Tropical
18.
Glob Chang Biol ; 27(23): 6005-6024, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34478589

RESUMEN

Droughts in a warming climate have become more common and more extreme, making understanding forest responses to water stress increasingly pressing. Analysis of water stress in trees has long focused on water potential in xylem and leaves, which influences stomatal closure and water flow through the soil-plant-atmosphere continuum. At the same time, changes of vegetation water content (VWC) are linked to a range of tree responses, including fluxes of water and carbon, mortality, flammability, and more. Unlike water potential, which requires demanding in situ measurements, VWC can be retrieved from remote sensing measurements, particularly at microwave frequencies using radar and radiometry. Here, we highlight key frontiers through which VWC has the potential to significantly increase our understanding of forest responses to water stress. To validate remote sensing observations of VWC at landscape scale and to better relate them to data assimilation model parameters, we introduce an ecosystem-scale analog of the pressure-volume curve, the non-linear relationship between average leaf or branch water potential and water content commonly used in plant hydraulics. The sources of variability in these ecosystem-scale pressure-volume curves and their relationship to forest response to water stress are discussed. We further show to what extent diel, seasonal, and decadal dynamics of VWC reflect variations in different processes relating the tree response to water stress. VWC can also be used for inferring belowground conditions-which are difficult to impossible to observe directly. Lastly, we discuss how a dedicated geostationary spaceborne observational system for VWC, when combined with existing datasets, can capture diel and seasonal water dynamics to advance the science and applications of global forest vulnerability to future droughts.


Asunto(s)
Sequías , Ecosistema , Bosques , Hojas de la Planta , Árboles , Xilema
19.
Ecol Lett ; 24(11): 2350-2363, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34409716

RESUMEN

Hydraulic failure caused by severe drought contributes to aboveground dieback and whole-plant death. The extent to which dieback or whole-plant death can be predicted by plant hydraulic traits has rarely been tested among species with different leaf habits and/or growth forms. We investigated 19 hydraulic traits in 40 woody species in a tropical savanna and their potential correlations with drought response during an extreme drought event during the El Niño-Southern Oscillation in 2015. Plant hydraulic trait variation was partitioned substantially by leaf habit but not growth form along a trade-off axis between traits that support drought tolerance versus avoidance. Semi-deciduous species and shrubs had the highest branch dieback and top-kill (complete aboveground death) among the leaf habits or growth forms. Dieback and top-kill were well explained by combining hydraulic traits with leaf habit and growth form, suggesting integrating life history traits with hydraulic traits will yield better predictions.


Asunto(s)
Sequías , Agua , Hábitos , Hojas de la Planta , Árboles
20.
Front Plant Sci ; 12: 633595, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34163496

RESUMEN

The Pneumatron device measures gas diffusion kinetics in the xylem of plants. The device provides an easy, low-cost, and powerful tool for research on plant water relations and gas exchange. Here, we describe in detail how to construct and operate this device to estimate embolism resistance of angiosperm xylem, and how to analyse pneumatic data. Simple and more elaborated ways of constructing a Pneumatron are shown, either using wires, a breadboard, or a printed circuit board. The instrument is based on an open-source hardware and software system, which allows users to operate it in an automated or semi-automated way. A step-by-step manual and a troubleshooting section are provided. An excel spreadsheet and an R-script are also presented for fast and easy data analysis. This manual aims at helping users to avoid common mistakes, such as unstable measurements of the minimum and maximum amount of gas discharged from xylem tissue, which has major consequences for estimating embolism resistance. Major advantages of the Pneumatron device include its automated and accurate measurements of gas diffusion rates, including highly precise measurements of the gas volume in intact, embolised conduits. It is currently unclear if the method can also be applied to woody monocots, gymnosperm species that possess torus-margo pit membranes, or to herbaceous species.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA