Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 658
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39137965

RESUMEN

OBJECTIVES: People with multiple system atrophy (MSA) and their carers may have many concerns about their disease and the future. This survey of people with MSA and their carers aimed to increase understanding of end-of-life care and palliative care for this group. METHODS: A survey was undertaken by the MSA Trust of people living with MSA and carers of those with the condition between August and October 2022. RESULTS: 520 people responded: 215 people with MSA, 214 carers and 91 former carers. The modal class for age in people with MSA was 65-74 years, with 52% male. 76% of people living with MSA had thought to some extent about what they wanted to happen towards the end of their lives. 38% of respondents had discussed end-of-life care options with a healthcare professional and of those who had, over 81% found the conversation helpful. Nevertheless, for 37% of former carers, the death had been unexpected. Only a minority of people living with MSA had been referred for specialist palliative care. 65% of the former carers reported that they were satisfied with the quality of end-of-life care. CONCLUSION: People with MSA and their carers continue to face many complex physical and emotional issues that would benefit from palliative care. Discussions about care at the end of life were generally perceived as helpful, but although the deterioration was often discussed, many families seemed unprepared for the death. Palliative care services were involved but this appeared limited.

5.
Water Res ; 261: 122028, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38991248

RESUMEN

Emerging evidence indicates that micro- and macro-plastics present in water can support a diverse microbial community, including potential human pathogens (e.g., bacteria, viruses). This interaction raises important concerns surrounding the role and suitability of current bathing water regulations and associated pathogen exposure risk within beach environments. In response to this, we critically evaluated the available evidence on plastic-pathogen interactions and identified major gaps in knowledge. This review highlighted the need for a conceptual shift in risk management at public beaches recognising: (i) interconnected environmental risks, e.g., associations between microbial compliance parameters, potential pathogens and both contemporary and legacy plastic pollution; and (ii) an appreciation of risk of exposure to plastic co-pollutants for both water and waterside users. We present a decision-making framework to identify options to manage plastic-associated pathogen risks alongside short- and longer-term research priorities. This advance will help deliver improvements in managing plastic-associated pathogen risk, acknowledging that human exposure potential is not limited to only those who engage in water-based activity. We argue that adopting these recommendations will help create an integrated approach to managing and reducing human exposure to pathogens at bathing, recreational water and beach environments.


Asunto(s)
Playas , Plásticos , Gestión de Riesgos , Humanos , Microbiología del Agua , Contaminación del Agua
9.
Elife ; 132024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38860651

RESUMEN

The autoimmune disease lupus erythematosus (lupus) is characterized by photosensitivity, where even ambient ultraviolet radiation (UVR) exposure can lead to development of inflammatory skin lesions. We have previously shown that Langerhans cells (LCs) limit keratinocyte apoptosis and photosensitivity via a disintegrin and metalloprotease 17 (ADAM17)-mediated release of epidermal growth factor receptor (EGFR) ligands and that LC ADAM17 sheddase activity is reduced in lupus. Here, we sought to understand how the lupus skin environment contributes to LC ADAM17 dysfunction and, in the process, differentiate between effects on LC ADAM17 sheddase function, LC ADAM17 expression, and LC numbers. We show through transcriptomic analysis a shared IFN-rich environment in non-lesional skin across human lupus and three murine models: MRL/lpr, B6.Sle1yaa, and imiquimod (IMQ) mice. IFN-I inhibits LC ADAM17 sheddase activity in murine and human LCs, and IFNAR blockade in lupus model mice restores LC ADAM17 sheddase activity, all without consistent effects on LC ADAM17 protein expression or LC numbers. Anti-IFNAR-mediated LC ADAM17 sheddase function restoration is associated with reduced photosensitive responses that are dependent on EGFR signaling and LC ADAM17. Reactive oxygen species (ROS) is a known mediator of ADAM17 activity; we show that UVR-induced LC ROS production is reduced in lupus model mice, restored by anti-IFNAR, and is cytoplasmic in origin. Our findings suggest that IFN-I promotes photosensitivity at least in part by inhibiting UVR-induced LC ADAM17 sheddase function and raise the possibility that anifrolumab ameliorates lupus skin disease in part by restoring this function. This work provides insight into IFN-I-mediated disease mechanisms, LC regulation, and a potential mechanism of action for anifrolumab in lupus.


Asunto(s)
Proteína ADAM17 , Células de Langerhans , Lupus Eritematoso Sistémico , Piel , Proteína ADAM17/metabolismo , Proteína ADAM17/genética , Animales , Humanos , Células de Langerhans/metabolismo , Ratones , Piel/metabolismo , Piel/patología , Piel/efectos de la radiación , Lupus Eritematoso Sistémico/metabolismo , Rayos Ultravioleta/efectos adversos , Femenino , Modelos Animales de Enfermedad , Trastornos por Fotosensibilidad/metabolismo , Interferones/metabolismo , Ratones Endogámicos MRL lpr
12.
BMJ ; 385: q993, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719490
13.
BMJ ; 385: q1009, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719537
14.
16.
17.
Sci Total Environ ; 921: 171074, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38378059

RESUMEN

Septic tank systems (STS) in rural catchments represent a potential source of microbial pollution to watercourses; however, data concerning the risk of faecal indicator organism (FIO) export from STS to surface waters are scarce. In the absence of empirical data, elicitation of expert judgements can provide an alternative approach to aid understanding of FIO pollution risk from STS. Our study employed a structured elicitation process using the Sheffield Elicitation Framework to obtain expert judgements on the proportion of FIOs likely to be delivered from STS to watercourses, based on 36 scenarios combining: (i) septic tank effluent movement risk, driven by soil hydro-morphological characteristics; (ii) distance of septic tank to watercourse; and (iii) degree of slope. Experts used the tertile method to elicit a range of values representing their beliefs of the proportion of FIOs likely to be delivered to a watercourse for each scenario. The experts judged that 93 % of FIOs would likely be delivered from an STS to a watercourse under the highest risk scenario that combined (i) very high STS effluent movement risk, (ii) STS distance to watercourse <10 m, and (iii) a location on a steep slope with gradient >25 %. Under the lowest risk scenario, the proportion of FIOs reaching a watercourse would likely reduce to 5 %. Expert confidence was high for scenarios that represented extremes of risk, while uncertainty increased for scenarios depicting intermediate risk conditions. The behavioural aggregation process employed to obtain a consensus among the experts proved to be useful for highlighting both areas of strong consensus and high uncertainty. The latter therefore represent priorities for future empirical research to further improve our understanding of potential pollution risk from septic tanks and in turn enable better assessments of potential threats to water quality in rural catchments throughout the world where decentralised wastewater systems are common.


Asunto(s)
Juicio , Calidad del Agua , Heces
18.
bioRxiv ; 2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38405750

RESUMEN

Macrophages adopt distinct phenotypes in response to environmental cues, with type-2 cytokine interleukin-4 promoting a tissue-repair homeostatic state (M2IL4). Glucocorticoids, widely used anti-inflammatory therapeutics, reportedly impart a similar phenotype (M2GC), but how such disparate pathways may functionally converge is unknown. We show using integrative functional genomics that M2IL4 and M2GC transcriptomes share a striking overlap mirrored by a shift in chromatin landscape in both common and signal-specific gene subsets. This core homeostatic program is enacted by transcriptional effectors KLF4 and the GC receptor, whose genome-wide occupancy and actions are integrated in a stimulus-specific manner by the nuclear receptor cofactor GRIP1. Indeed, many of the M2IL4:M2GC-shared transcriptomic changes were GRIP1-dependent. Consistently, GRIP1 loss attenuated phagocytic activity of both populations in vitro and macrophage tissue-repair properties in the murine colitis model in vivo. These findings provide a mechanistic framework for homeostatic macrophage programming by distinct signals, to better inform anti-inflammatory drug design.

20.
Lab Chip ; 24(6): 1557-1572, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38205530

RESUMEN

Enzymatically isolated pancreatic islets are the most commonly used ex vivo testbeds for diabetes research. Recently, precision-cut living slices of human pancreas are emerging as an exciting alternative because they maintain the complex architecture of the endocrine and exocrine tissues, and do not suffer from the mechanical and chemical stress of enzymatic isolation. We report a fluidic pancreatic SliceChip platform with dynamic environmental controls that generates a warm, oxygenated, and bubble-free fluidic pathway across singular immobilized slices with continuous deliver of fresh media and the ability to perform repeat serial perfusion assessments. A degasser ensures the system remains bubble-free while systemic pressurization with compressed oxygen ensures slice medium remains adequately oxygenated. Computational modeling of perfusion and oxygen dynamics within SliceChip guide the system's physiomimetic culture conditions. Maintenance of the physiological glucose dependent insulin secretion profile across repeat perfusion assessments of individual pancreatic slices kept under physiological oxygen levels demonstrated the culture capacity of our platform. Fluorescent images acquired every 4 hours of transgenic murine pancreatic slices were reliably stable and recoverable over a 5 day period due to the inclusion of a 3D-printed bioinert metallic anchor that maintained slice position within the SliceChip. Our slice on a chip platform has the potential to expand the useability of human pancreatic slices for diabetes pathogenesis and the development of new therapeutic approaches, while also enabling organotypic culture and assessment of other tissue slices such as brain and patient tumors.


Asunto(s)
Diabetes Mellitus , Islotes Pancreáticos , Humanos , Ratones , Animales , Sistemas Microfisiológicos , Páncreas , Islotes Pancreáticos/metabolismo , Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA