Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Poult Sci ; 103(12): 104334, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39366292

RESUMEN

The increasing recognition of the potential advantages beyond nanoencapsulation of probiotics gained great attention owing to effective properties. Hence, we provided the most in-depth look into the influence of nanoformulated multi strain probiotics; BLB-NPs comprising Bacillus subtilis ATCC19659, Lactobacillus plantarum ATCC8014 and Bifidobacterium bifidum ATCC29521 on growth performance, antioxidant status and intestinal immunity supporting the defense against Salmonella Typhimurium (S. Typhimurium) challenge in broilers chickens. A total of 2,800 one-day-old male Ross 308 boiler chicks were divided into 7 groups; 1 control without additives, 3 probiotics [fed control diets mixed with B. subtilis, L. plantarum and B. bifidum (BLB) at concentrations of 1 × 104 (BLBI), 1 × 106 (BLBII) and 1 × 108 (BLBIII) CFU /kg diet, respectively] and 3 nanoencapsulated probiotics [fed control diets supplemented with BLB loaded nanoparticles (BLB-NPs) at concentrations of 1 × 104 (BLB-NPsI), 1 × 106 (BLB-NPsII) and 1 × 108 (BLB-NPsIII) CFU /kg diet, respectively]. All previous groups were challenged at d 22 of age with S. Typhimurium. Birds fed BLB-NPs II and III exhibited better weight gain and FCR simultaneously with upregulation in nutrients transporters genes (LAT-1, PepT-1, CAT-1 and SGLT1) even after S. Typhimurium challenge. Upregulation of immmune related genes (IL-1ß, IL-6, IL-8, MyD88, NF-kB, CCL20, CXCLi2, TLR-2, TLR-4 and SOCS1) was prominently subsided in BLB-NPsIII fed group. The strengthening ability of BLB-NPs for broilers' intestinal barriers was evidenced by augmented expression of JAM, MUC-2, occludin and FABP-2 genes, diminished S. Typhimurium counts and suppressed its virulence related genes (HilA and SopD) with restored histopathological pictures of cecum. Notably, post dietary inclusion of higher levels of BLB-NPsIII, the abundance of beneficial Biofidobacterium and Lactobacillus species was dominated over harmful E. coli ones. Birds fortified with BLB-NPs displayed potent antioxidant potential signified by boosting serum and intestinal antioxidant markers alongside reducing oxidative ones. Overall, the abovementioned positive outcomes of BLB-NPs encouraged their potential application in poultry feed to attain superior performance and elicit protective immunity against S. Typhimurium infection.

2.
Animals (Basel) ; 13(24)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38136899

RESUMEN

The impact of microbial muramidase (MMUR) addition to broiler chicken rations was evaluated through growth parameters, liver histoarchitecture, antioxidant status, biochemical analysis, and expression of pro-inflammatory cytokines for 35 days. Four hundred three-day-old chicks (97.68 ± 0.59 g) were distributed to four distinct groups with ten duplicates each (100 chicks/group) consisting of: group 1 (G1): a basal diet without MMUR (control group); G2: a basal diet + 200 mg MMUR kg-1 G3: a basal diet + 400 mg MMUR kg-1; and G4: a basal diet + 600 mg MMUR kg-1. The results showed that the final body weight and total weight gain were increased (p = 0.015) in birds fed with diets supplemented with MMUR at 600 mg kg-1. The feed conversion ratio (FCR) was improved in all treatment groups compared with the control group. Birds fed with a diet supplemented with 600 mg MMUR kg-1 showed the highest body weight gain and improved FCR. The values of thyroxin hormones and growth hormones were increased in all MMUR-supplemented groups. Dietary MMUR increased the activities of antioxidant enzymes (total antioxidant activity, catalase, and superoxide dismutase) and decreased the activity of malondialdehyde (p < 0.05). In addition, it increased the values of interleukin 1 beta and interferon-gamma compared with the control group. Furthermore, dietary MMUR increased the expression of transforming growth factor-beta immunostaining in the liver and spleen tissues. Our results show that supplementing broilers' diets with 600 mg MMUR kg-1 could enhance the chicken growth rate and improve their antioxidant, inflammatory, and anti-inflammatory responses.

3.
Animals (Basel) ; 13(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36978513

RESUMEN

This investigation explored the impact of dietary frankincense resin oil (FO) on growth performance parameters, intestinal histomorphology, fatty acid composition of the breast muscle, and the immune status of broilers. We allotted 400, three-day-old, male chicks (Ross 308 broiler) into four treatment groups (ten replicates/group; ten chicks/replicate). They were fed a basal diet with different concentrations of FO (0, 200, 400, and 600 mg kg-1). FO supplementation increased the overall body weight (BW) and body weight gain (BWG) by different amounts, linearly improving the feed conversion ratio with the in-supplementation level. Total feed intake (TFI) was not affected. Growth hormones and total serum protein levels also linearly increased with the FO level, while albumin was elevated in the FO600 group. Moreover, total globulins increased linearly in FO400 and FO600 treatment groups. Thyroxin hormone (T3 and T4) levels increased in all FO treatment groups without affecting glucose and leptin serum values. Different concentrations of FO supplementation in the diet increased the activities of Complement 3, lysozyme, and interleukin 10 levels in the serum. Dietary FO in broilers increased the total percentage of n-3 and n-6 fatty acids. It also increased the ratio of n-3 to n-6 linearly and quadratically. Additionally, FO supplementation led to the upregulation of immune clusters of differentiation 3 and 20 (CD3 and CD20) in the spleen, along with improving most of the morphometric measures of the small intestine. In conclusion, FO up to 600 mg kg-1 as a feed additive in broiler chicken production is valuable for promoting their growth, intestinal histomorphology, and immune status along with enriching breast muscle with polyunsaturated fatty acids (PUFA).

4.
Antioxidants (Basel) ; 11(11)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36358553

RESUMEN

The oxidative stress facing fish during intensive production brings about diseases and mortalities that negatively influence their performance. Along with that, the increased awareness of omega-3 polyunsaturated fatty acids (omega-3-PUFAs) health benefits has been triggered the introduction of alternative additives in aqua feed that cause not only modulation in fish immune response but also fortification of their fillet. In this context, the role of microalgae mix (NSS) containing Nannochloropsis oculate and Schizochytrium and Spirulina species, which were enriched with bioactive molecules, especially EPA and DHA, was assessed on Nile tilapia's performance, fillet antioxidant stability, immune response, and disease resistance. Varying levels of NSS (0.75, 1.5, and 3%) were added to Nile tilapia's diet for 12 weeks and then a challenge of fish with virulent Aeromonas hydrophila (A. hydrophila) was carried out. Results showed that groups fed NSS, especially at higher levels, showed an improved WG and FCR, which corresponded with enhanced digestive enzymes' activities. Higher T-AOC was detected in muscle tissues of NSS3.0% fed fish with remarkable reduction in ROS, H2O2, and MDA contents, which came in parallel with upregulation of GSH-Px, CAT, and SOD genes. Notably, the contents of EPA and DHA in fillet were significantly increased with increasing the NSS levels. The mean log10 counts of pathogenic Vibrio and Staphylococcus species were reduced, and conversely, the populations of beneficial Lactobacillus and Bacillus species were increased more eminent after supplementation of NSS3.0% and NSS1.5%. Moreover, regulation of the immune response (lysozyme, IgM, ACH50, NO, and MPO), upregulation of IL-10, TGF-ß, and IgM, and downregulation of IL-1ß, TNF-α, HSP70,and COX-2 were observed following dietary higher NSS levels. After challenge, reduction in A. hydrophila counts was more prominent, especially in NSS3.0% supplemented group. Taken together, the current study encourages the incorporation of such microalgae mix in Nile tilapia's diet for targeting maximum performance, superior fillet quality, and protection against A. hydrophila.

5.
Antioxidants (Basel) ; 11(5)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35624855

RESUMEN

This study investigated the dietary effect of Spirulina platensis phycocyanin (SPC) on growth performance (body weight (BW), body weight gain (BWG), feed intake (FI), feed conversion ratio (FCR)) at starter, grower, and finisher stages, intestinal histomorphology, serum biochemical parameters, inflammatory and antioxidant indices, and proinflammatory cytokines (tumor necrosis factor-α and caspase-3) immune expression in broiler chickens. In total, 250 one-day-old chicks (Ross 308 broiler) were randomly allotted to five experimental groups (5 replicates/group, 10 chicks/replicate) and fed basal diets supplemented with five levels of SPC (0, 0.25, 0.5, 0.75, and 1 g kg-1 diet) for 35 days. Compared with SPC0 treatment, different SPC levels increased the overall BW and BWG without affecting the total feed consumption. However, the FCR decreased linearly with an increase in supplementation level. The serum levels of total proteins, albumin, globulins, and growth hormone increased linearly by increasing levels of SPC supplementation. Further, SPC supplementation increased the thyroxin hormones without affecting serum glucose and leptin levels. Serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) values decreased in broilers fed SPC0.250 and SPC1 diets. Triglycerides (TG) decreased in SPC0.25-, SPC0.75-, and SPC1-treated groups. Though antioxidant enzyme activities (total antioxidant capacity, catalase, and superoxide dismutase) increased linearly and quadratically, malondialdehyde (MDA) decreased linearly by increasing the SPC level. There was no effect on serum proinflammatory cytokines IL1ß levels. Immunolabelling index of caspase-3 and tumor necrosis factor-α (TNF-α) were downregulated by SPC supplementation. The intestinal histomorphology is represented by increased villus height, the villus height to crypt depth ratio, and numbers of goblet cells in different sections of the small intestine. In conclusion, SPC supplementation is beneficial in broiler chicken diets due to its growth-promoting, antioxidant, and anti-inflammatory properties.

6.
Front Vet Sci ; 8: 696841, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34336981

RESUMEN

Improving the nutritional quality of unconventional feed ingredients such as fava bean by-products can enhance their utilization by broiler chickens. Hence, the quality of fermented fava bean by-products (FFB), in addition to growth, nutrient digestibility, digestive enzyme, and intestinal barrier-related gene expression, and serum biochemical and immunological parameters were evaluated in response to different levels of FFB. A total of 500 1-day-old broiler chicks (46.00 ± 0.388 g) were allocated to five groups with 10 replicates each (100 chicks per treatment). The first group was fed a corn-soybean diet (control diet), and the other four groups were fed a diet containing 5, 15, 25, and 35% FFB for 38 days. Birds fed 25% FFB exhibited maximum body weight gain (increase by 12.5%, compared with the control group) and the most improved feed conversion ratio. Additionally, birds fed FFB at 15, 25, and 35% showed improved dry matter and crude protein digestibility. Moreover, birds fed FFB at 25 and 35% exhibited a decrease in ileal pH and an increase in fiber digestibility (p < 0.05). Upregulation of digestive enzyme genes (AMY2A, PNLIP, and CCK) was observed in groups fed with FFB. The most prominent upregulation of genes encoding tight junction proteins (claudin-1, occludin, and junctional adhesion molecules) in the duodenum was observed in chicks fed 25 and 35% FFB (increase of 0.66-, 0.31-, and 1.06-fold and 0.74-, 0.44-, and 0.92-fold, respectively). Additionally, the highest expression level of enterocyte protective genes [glucagon-like peptide (GLP-2), mucin-2 (MUC-2), and fatty acid-binding protein (FABP-6)] was detected in duodenum of chicks fed high levels of FFB. Substitution of corn-soybean diet with FFB had an inhibitory effect on cecal pathogenic microbes (Escherichia coli and Clostridium perfringens) and increased beneficial microflora (Lactobacilli and Bifidobacterium), especially at high levels. Additionally, an increase was observed in IgM and lysozyme activity, with no effect on IgA in all groups fed FFB. All levels of FFB decreased cholesterol levels. Based on our results, we concluded that substitution of corn-soybean diet with FFB can improve the growth rate and nutrient digestibility of broiler chickens, enhance their intestinal barrier functions, and increase the number of beneficial microorganisms. Using FFB at 25% had a positive effect on the growth performance of broiler chickens, and it could be utilized in poultry farms.

7.
BMC Vet Res ; 17(1): 68, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-33541348

RESUMEN

BACKGROUND: The effects of safflower oil and vitamin C (Vit. C) inclusion in broiler chicken diets on the growth performance, apparent ileal digestibility coefficient "AID%" of amino acids, intestinal histology, behavior, carcass traits, fatty acid composition of the breast muscle, antioxidant and immune status for a 35-day feeding period were evaluated. A total of 300 three-day-old Ross chicks (58.25 g ± 0.19) were randomly allotted in a 2 × 3 factorial design consisting of two levels of vitamin C (0 and 400 mg/kg diet) and three levels of safflower oil (0, 5, and 10 g/kg diet). RESULTS: An increase in the final body weight, total body weight gain, total feed intake, and the relative growth rate (P <  0.05) were reported by safflower oil and vitamin C inclusion. Dietary supplementation of safflower oil and vitamin C had a positive effect (P <  0.05) on the ingestive, resting, and feather preening behavior. Vitamin C supplementation increased (P <  0.05) the AID% of lysine, threonine, tryptophan, arginine, and valine. Safflower inclusion (10 g/kg) increased (P <  0.05) the AID% of methionine and isoleucine. Safflower oil inclusion increased (P <  0.05) the levels of stearic acid, linoleic acid, saturated fatty acids, and omega-3 fatty acids (ω-3) in the breast muscle. In contrast, the supplementation of only 10 g of safflower oil/kg diet increased (P = 0.01) the omega-3/omega-6 (ω-3/ω-6) fatty acids ratio. Vit. C supplementation increased (P <  0.05) the CAT serum levels, SOD, and GSH enzymes. Dietary supplementation of safflower oil and vitamin C improved the intestinal histology. They increased the villous height and width, crypt depth, villous height/crypt depth ratio, mucosal thickness, goblet cell count, and intra-epithelium lymphocytic lick cell infiltrations. The serum levels of IgA and complement C3 were increased (P <  0.01) by Vit. C supplementation and prominent in the 400 vit. C +  10 safflower Oil group. CONCLUSION: A dietary combination of safflower oil and vitamin C resulted in improved growth rate, amino acids AID%, intestinal histology, welfare, immune and antioxidant status of birds, and obtaining ω-3 and linoleic acid-enriched breast muscles. The best inclusion level was 400 vit. C +  10 safflower Oil.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Ácido Ascórbico/administración & dosificación , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Aceite de Cártamo/administración & dosificación , Alimentación Animal/análisis , Animales , Conducta Animal/fisiología , Pollos/sangre , Pollos/fisiología , Ácidos Grasos/análisis , Intestinos/anatomía & histología , Intestinos/efectos de los fármacos , Intestinos/fisiología , Músculo Esquelético/química
8.
Front Vet Sci ; 7: 582612, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282930

RESUMEN

The effect of phenolic-rich onion extract (PROE), as a feed additive, was evaluated on the growth, carcass traits, behavior, welfare, intestinal histology, amino acid ileal digestibility "AID%," and the immune status of broiler chicks for 35 days. A total number of 400, 1-day-old broiler chicks (45.38 g ± 1.35) were allocated to four different treatments with 10 replicates each (100 chicks/treatment) consisting of: T1, basal diet without additives (control treatment) (PROE0); T2, basal diet + phenolic-rich onion extract (1 g/kg diet) (PROE1); T3, basal diet + phenolic-rich onion extract (2 g/kg diet) (PROE2); and T4, basal diet + phenolic-rich onion extract (3 g/kg diet) (PROE3). An increase in the final body weight "FBW," bodyweight gain "BWG," and feed consumption was observed (P < 0.05) at different PROE levels. Also, the thymus and bursa percentages were increased in the PROE2 and PROE3 treatments (P < 0.05). The chicks fed on PROE supplemented diets had increased frequency of feeding and drinking and showed comfortable behavior (P < 0.05) with lesser aggression (P < 0.05). Additionally, an increase was observed in the antioxidant enzyme activity, phagocytic %, phagocytic index, and serum lysozyme activity in PROE supplemented treatments, with the best outcome reported in the PROE3 treatment (P < 0.01). IgM was increased in the birds fed with PROE2 and PROE3 diets (P < 0.01). PROE supplementation increased the AID% of lysine and methionine (P <0.01), PROE3 treatment increased the AID% of threonine (P < 0.05), and PROE2 and PROE3 treatments increased the AID% of leucine and isoleucine (P < 0.05). Besides, PROE2, and PROE3 treatments increased the villus height and width, mucosal thickness, and goblet cell count from the duodena, jejuna, and ilea (P < 0.05) compared to control treatment. Based on these results, we concluded that the dietary addition of phenolic-rich onion extracts can improve the growth rate of broiler chicken by improving the AID% of amino acids and intestinal histology. Also, it can improve the welfare, antioxidant enzymes activity, and immune status of the birds. Phenolic-rich onion extracts can be used as a natural growth promoter in the poultry feed for good health and improved performance.

9.
Front Vet Sci ; 7: 584921, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33251266

RESUMEN

Antibiotic growth promoters have been used to improve growth and feed conversion in the poultry industry for a long time; however, they were banned because of several life-threatening side effects in animals, poultry, and humans. This work was carried out to investigate the effect of leek (Allium ampeloprasum var. kurrat) leaf extract (LLE) as a non-traditional growth promoter and feed additive on growth performance, carcass characteristics, serum biochemical parameters, and economic efficiency of broilers. Hubbard unsexed 1-day-old broilers (n = 250) were fed with diets supplemented with LLE for 42 days. The experimental chicks were randomly assigned to one of the five treatment groups varying in LLE quantity in diets: 0% (control), 0.05, 0.1, 0.15, and 0.2%, with five replicates per treatment (50 chicks/treatment or 10 chicks/replicate). Results showed that LLE supplementation improved (P < 0.05) different growth performance parameters. Furthermore, dietary LLE not only decreased serum total cholesterol, triglyceride, low-density lipoprotein, and glucose levels but also increased serum high-density lipoprotein level compared to the control diet. The weight percentages of dressing (P = 0.022) and liver (P = 0.041) showed a marked increase after the addition of LLE. Return, net profit, and collective efficiency measures were increased (P = 0.001) in all LLE groups compared with the control group. Broilers that fed on diets containing 0.2% LLE showed the highest growth and economic efficiency. It could be concluded that supplementation with LLE in broilers has growth-promoting effects, improved biochemical parameters, carcass quality, and promoted economic efficiency through maximizing both return and net profit.

10.
BMC Vet Res ; 16(1): 424, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33153443

RESUMEN

BACKGROUND: Poultry feed consists mainly of conventional grains and protein supplements, however, using treated unconventional agro-industrial by-products as replacements of corn soybean-based diet can minimize production costs and improve productivity. Therefore, in this study, the effects of fermented or enzymatically treated dried brewer grains (DBG) on growth, expression of digestive enzymes and nutrient transporters genes and the profitability of the rations were evaluated. A total of 1600 one-day-old Ross 308 broiler chicks were randomly distributed in 2 × 4 factorial arrangement (eight treatments with ten replicates, 20 birds/replicate). Experimental diets included two controls; negative control (basal corn-soybean diet; NC) and positive control (basal corn-soybean diet with exogenous enzymes; PC), and six diets in which basal diet was replaced by three levels of fermented DBG (FDBG; 5, 10 or 15%), or enzyme-treated DBG (DBG 5, 10 or 15%+Enz), for 38 days. RESULTS: The results described that feeding FDBG (three levels) or DBG5%+Enz improved (P < 0.05) BW gain and feed efficiency of broilers. Also, feeding FDBG10% yielded the best improvement in weight gain (10%), compared to NC group. Increasing the inclusion levels of DBG either fermented or enzymatically treated up-regulated (p < 0.01) expression of digestive-genes in proventriculus (PGC and PGA5, range 1.4-1.8 fold), pancreas (AMY2A, PNLIP, CELA1, and CCK; range 1.2-2.3 fold) and duodenum (CAT1, CAT2, GLUT1, GLUT2, LAT1, Pep1; range 1.3-3 fold) when compared to NC group. Feeding treated DBG significantly increased (p < 0.05, range 4.5-13.6%) gizzard relative weight compared to NC and PC groups. An additional benefit was lower (p < 0.01) cholesterol content from 66.9 mg/100 mg (NC) to 62.8 mg/100 mg (FDBG5 or 10%) in thigh meat. Furthermore, the least cost feed/kg body gain was achieved in FDBG10% and DBG5%+Enz groups, with approx. 16% reduction compared to NC cost, leading to increasing the income gross margin by 47% and 40% in FDBG10% and DBG5%+Enz groups, respectively. CONCLUSIONS: Substitution of corn-soybean based diet with 10% FDBG or 5% DBG+Enz resulted in better growth and higher economic efficiency of broilers chickens.


Asunto(s)
Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Pollos/crecimiento & desarrollo , Dieta/veterinaria , Grano Comestible , Animales , Transporte Biológico , Pollos/genética , Pollos/metabolismo , Análisis Costo-Beneficio , Sistema Digestivo/enzimología , Sistema Digestivo/metabolismo , Fermentación , Regulación de la Expresión Génica , Masculino , Glycine max , Zea mays
11.
Biol Trace Elem Res ; 187(1): 92-99, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29704207

RESUMEN

The aim of this study was to investigate the effect of dietary supplementation with different sources of selenium and/or organic chromium on the growth performance, digestibility, lipid profile, and mineral content of hair, liver, and fore and hind limb of growing rabbits. A total of 150 weanling New Zealand White (NZW) male rabbits were randomly allotted to six dietary treatment groups: (1) basal diet (control group), (2) basal diet + 0.6 mg sodium selenite/kg diet, (3) basal diet + 0.6 mg selenium yeast/kg diet, (4) basal diet + 0.3 mg sodium selenite/kg diet + 0.3 mg selenium yeast/kg diet, (5) basal diet + 0.6 mg chromium yeast/kg diet + 0.6 mg selenium yeast/kg diet, (6) basal diet + 0.6 mg chromium yeast/kg diet. Only the combination between inorganic and organic selenium led to significant improvement in body weight, body weight gain, and feed conversion ratio. Carcass traits were not different in all groups. Selenium (Se) and chromium (Cr) were deposited in the tissues of rabbits fed diets supplemented with Se and Cr, respectively. Blood serum in both of selenium- and chromium-supplemented groups showed declined total cholesterol, triglycerides, and low-density lipoprotein (LDL). Group supplemented with organic chromium showed higher high-density lipoprotein (HDL) than the other groups. It could be concluded that using a mixture of inorganic and organic Se has a positive effect on the growth performance of growing rabbits. Both Se and Cr have hypocholesterolemic effect. Both of Se and Cr can be deposited in the meat and other tissues of rabbits and that improves meat quality which positively reflects on human acceptance. The combination between inorganic (0.3 mg sodium selenite/kg diet) and organic selenium (0.6 mg selenium yeast/kg diet) improved growth performance traits of growing rabbits.


Asunto(s)
Cromo/administración & dosificación , Cromo/farmacología , Suplementos Dietéticos , Crecimiento/efectos de los fármacos , Lípidos/sangre , Minerales/análisis , Selenio/administración & dosificación , Selenio/farmacología , Alimentación Animal/análisis , Animales , Peso Corporal/efectos de los fármacos , Masculino , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA