Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cell Host Microbe ; 32(4): 573-587.e5, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38569545

RESUMEN

Microbiota assembly in the infant gut is influenced by diet. Breastfeeding and human breastmilk oligosaccharides promote the colonization of beneficial bifidobacteria. Infant formulas are supplemented with bifidobacteria or complex oligosaccharides, notably galacto-oligosaccharides (GOS), to mimic breast milk. To compare microbiota development across feeding modes, this randomized controlled intervention study (German Clinical Trial DRKS00012313) longitudinally sampled infant stool during the first year of life, revealing similar fecal bacterial communities between formula- and breast-fed infants (N = 210) but differences across age. Infant formula containing GOS sustained high levels of bifidobacteria compared with formula containing B. longum and B. breve or placebo. Metabolite and bacterial profiling revealed 24-h oscillations and circadian networks. Rhythmicity in bacterial diversity, specific taxa, and functional pathways increased with age and was strongest following breastfeeding and GOS supplementation. Circadian rhythms in dominant taxa were further maintained ex vivo in a chemostat model. Hence, microbiota rhythmicity develops early in life and is impacted by diet.


Asunto(s)
Fórmulas Infantiles , Microbiota , Lactante , Femenino , Humanos , Fórmulas Infantiles/microbiología , Lactancia Materna , Leche Humana , Bifidobacterium , Heces/microbiología , Oligosacáridos/metabolismo , Ritmo Circadiano
2.
Front Cell Infect Microbiol ; 11: 809792, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155271

RESUMEN

Acne vulgaris is the most common dermatological disorder worldwide affecting more than 80% of adolescents and young adults with a global prevalence of 231 million cases in 2019. The involvement of the skin microbiome disbalance in the pathophysiology of acne is recognized, especially regarding the relative abundance and diversity of Propionibacterium acnes a well-known dominant human skin commensal. Biofilms, where bacteria are embedded into a protective polymeric extracellular matrix, are the most prevalent life style for microorganisms. P. acnes and its biofilm-forming ability is believed to be a contributing factor in the development of acne vulgaris, the persistence of the opportunistic pathogen and antibiotic therapy failures. Degradation of the extracellular matrix is one of the strategies used by bacteria to disperse the biofilm of competitors. In this study, we report the identification of an endogenous extracellular nuclease, BmdE, secreted by Propionibacterium granulosum able to degrade P. acnes biofilm both in vivo and in vitro. This, to our knowledge, may represent a novel competitive mechanism between two closely related species in the skin. Antibiotics targeting P. acnes have been the mainstay in acne treatment. Extensive and long-term use of antibiotics has led to the selection and spread of resistant bacteria. The extracellular DNase BmdE may represent a new bio-therapeutical strategy to combat P. acnes biofilm in acne vulgaris.


Asunto(s)
Acné Vulgar , Biopelículas , Desoxirribonucleasas , Propionibacterium acnes , Acné Vulgar/microbiología , Matriz Extracelular de Sustancias Poliméricas , Humanos , Propionibacterium acnes/enzimología
3.
Exp Dermatol ; 27(6): 668-671, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29582469

RESUMEN

Abnormal hyperkeratinization in sebaceous hair follicles has long been believed to play an important role in acne pathogenesis. Several early reports purported to provide histological evidence for hyperproliferation of keratinocytes in acne lesions by showing a higher expression of the Ki67 as well as certain keratins. The evidence is, however, not robust, and a number of methodological and technical limitations can be identified in these studies. In this study, we looked at the expression of proliferation, mitosis and apoptosis markers directly at acne skin lesions in 66 patients with acne vulgaris. Ki67 was assessed using immunohistochemistry and α-tubulin, phospho-histone H3 and cleaved-PARP with immunofluorescence microscopy. Allogenic unaffected hair follicles from the same acne patients were used as an internal control. In both acne and control hair follicles, the α-tubulin staining was universal, approaching 100% cells and showed no signs of changed assembly. Expression of cleaved-PARP-the apoptosis marker-was a rare event. Cell proliferation rate measured by the expression of Ki67 and phospho-histone H3 was virtually identical between acne and the two control groups. Our findings show the absence of increased keratinocyte proliferation in acne vulgaris. Alternative mechanisms are likely responsible for infundibular hyperkeratinization in acne pathogenesis.


Asunto(s)
Acné Vulgar/patología , Acné Vulgar/fisiopatología , Proliferación Celular , Folículo Piloso/patología , Queratinocitos/patología , Queratinocitos/fisiología , Acné Vulgar/metabolismo , Adolescente , Adulto , Apoptosis , Femenino , Folículo Piloso/metabolismo , Histonas/metabolismo , Humanos , Queratinocitos/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Persona de Mediana Edad , Poli(ADP-Ribosa) Polimerasas/metabolismo , Tubulina (Proteína)/metabolismo , Adulto Joven
4.
Clin Dermatol ; 35(2): 118-129, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28274348

RESUMEN

Acne vulgaris is a chronic inflammatory skin condition classified by the Global Burden of Disease Study as the eighth most prevalent disease worldwide. The pathophysiology of the condition has been extensively studied, with an increase in sebum production, abnormal keratinization of the pilosebaceous follicle, and an inflammatory immune response all implicated in its etiology. One of the most disputed points, however, is the role of the gram-positive anaerobic bacterium Propionibacterium acnes in the development of acne, particularly when this organism is also found in normal sebaceous follicles of healthy skin. Against this background, we now describe the different sampling strategies that have been adopted for qualitative and quantitative study of P acnes within intact hair follicles of the skin and discuss the strengths and weaknesses of such methodologies for investigating the role of P acnes in the development of acne.


Asunto(s)
Acné Vulgar/microbiología , Propionibacterium acnes/fisiología , Piel/microbiología , Folículo Piloso/microbiología , Humanos , Propionibacterium acnes/aislamiento & purificación
5.
Data Brief ; 8: 1243-6, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27547804

RESUMEN

This data article reports changes in the cellular and exoproteome of B. cereus cured from pBClin15.Time-course changes of proteins were assessed by high-throughput nanoLC-MS/MS. We report all the peptides and proteins identified and quantified in B. cereus with and without pBClin15. Proteins were classified into functional groups using the information available in the KEGG classification and we reported their abundance in term of normalized spectral abundance factor. The repertoire of experimentally confirmed proteins of B. cereus presented here is the largest ever reported, and provides new insights into the interplay between pBClin15 and its host B. cereus ATCC 14579. The data reported here is related to a published shotgun proteomics analysis regarding the role of pBClin15, "Deciphering the interactions between the Bacillus cereus linear plasmid, pBClin15, and its host by high-throughput comparative proteomics" Madeira et al. [1]. All the associated mass spectrometry data have been deposited in the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository (http://www.ebi.ac.uk/pride/), with the dataset identifier PRIDE: PXD001568, PRIDE: PXD002788 and PRIDE: PXD002789.

6.
J Proteomics ; 146: 25-33, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27321915

RESUMEN

UNLABELLED: The pathogen, Bacillus cereus, is able to adapt its metabolism to various environmental conditions. The reference strain, Bacillus cereus ATCC 14579, harbors a linear plasmid, pBClin15, which displays a cryptic prophage behavior. Here, we studied the impact of pBClin15 on the aerobic respiratory metabolism of B. cereus by curing its host strain. We compared, by means of a high-throughput shotgun proteomic approach, both the cellular proteome and the exoproteome of B. cereus ATCC 14579 in the presence and absence of pBClin15 at the early, late and stationary growth phases. The results were visualized through a hierarchical cluster analysis of proteomic data. We found that pBClin15 contributes significantly to the metabolic efficiency of B. cereus by restricting the production of chromosome-encoded phage proteins in the extracellular milieu. The data also revealed intricate regulatory mechanisms between pBClin15 and its host. Finally, we show that pBClin15 provides benefit to its host to adapt to different ecologic niches. BIOLOGICAL SIGNIFICANCE: Bacteria belonging to the Bacillus cereus group include B. cereus, a notorious food borne pathogen which causes gastroenteritis. The B. cereus type, strain ATCC 14579, harbors a linear plasmid, pBClin15, which displays cryptic prophage behavior. Here, we present data supporting the idea that pBClin15 may have a much greater role in B. cereus metabolism that has hitherto been suspected. Specifically, our comparative proteomic analyses reveal that pBClin15 manages B. cereus central metabolism to optimize energy and carbon utilization through the repression of several chromosome-encoded phage proteins. These results suggest that pBClin15 provides benefit to the host for surviving adverse environmental conditions.


Asunto(s)
Bacillus cereus/genética , Plásmidos/genética , Proteómica , Adaptación Fisiológica/genética , Aerobiosis/genética , Bacillus cereus/crecimiento & desarrollo , Proteínas Bacterianas , Profagos , Proteómica/métodos , Espectrometría de Masas en Tándem
7.
Microbiology (Reading) ; 162(2): 268-282, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26602366

RESUMEN

The mechanism by which Neisseria meningitidis becomes invasive is not well understood. Comparative genomics identified the presence of an 8 kb island in strains belonging to invasive clonal complexes. This island was designated MDA for meningococcal disease associated. MDA is highly conserved among meningococcal isolates and its analysis revealed a genomic organization similar to that of a filamentous prophage such as CTXΦ of Vibrio cholerae. Subsequent molecular investigations showed that the MDA island has indeed the characteristics of a filamentous prophage, which can enter into a productive cycle and is secreted using the type IV pilus (tfp) secretin PilQ. At least three genes of the prophage are necessary for the formation of the replicative cytoplasmic form (orf1, orf2 and orf9). Immunolabelling of the phage with antibodies against the major capsid protein, ORF4, confirmed that filamentous particles, about 1200 nm long, covered with ORF4 are present at the bacterial surface forming bundles in some places and interacting with pili. The MDA bacteriophage is able to infect different N. meningitidis strains, using the type IV pili as a receptor via an interaction with the adsorption protein ORF6. Altogether, these data demonstrate that the MDA island encodes a functional prophage able to produce infectious filamentous phage particles.


Asunto(s)
Sitios de Ligazón Microbiológica/genética , Inovirus/genética , Neisseria meningitidis/genética , Neisseria meningitidis/virología , Profagos/genética , Receptores Virales/genética , Secuencia de Bases , ADN Viral/genética , Fimbrias Bacterianas/virología , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/patogenicidad , Análisis de Secuencia de ADN
8.
Front Microbiol ; 6: 1004, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26500610

RESUMEN

Bacillus cereus is a Gram-positive pathogen that causes a wide variety of diseases in humans. It secretes into the extracellular milieu proteins that may contribute directly or indirectly to its virulence. EntD is a novel exoprotein identified by proteogenomics of B. cereus ATCC 14579. We constructed a ΔentD mutant and analyzed the impact of entD disruption on the cellular proteome and exoproteome isolated from early, late, and stationary-phase cultures. We identified 308 and 79 proteins regulated by EntD in the cellular proteome and the exoproteome, respectively. The contribution of these proteins to important virulence-associated functions, including central metabolism, cell structure, antioxidative ability, cell motility, and toxin production, are presented. The proteomic data were correlated with the growth defect, cell morphology change, reduced motility, and reduced cytotoxicity of the ΔentD mutant strain. We conclude that EntD is an important player in B. cereus virulence. The function of EntD and the putative EntD-dependent regulatory network are discussed. To our knowledge, this study is the first characterization of an Ent family protein in a species of the B. cereus group.

9.
PLoS One ; 6(2): e17145, 2011 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-21386889

RESUMEN

A scientist in our laboratory was accidentally infected while working with Z5463, a Neisseria meningitidis serogroup A strain. She developed severe symptoms (fever, meningism, purpuric lesions) that fortunately evolved with antibiotic treatment to complete recovery. Pulse-field gel electrophoresis confirmed that the isolate obtained from the blood culture (Z5463BC) was identical to Z5463, more precisely to a fourth subculture of this strain used the week before the contamination (Z5463PI). In order to get some insights into genomic modifications that can occur in vivo, we sequenced these three isolates. All the strains contained a mutated mutS allele and therefore displayed an hypermutator phenotype, consistent with the high number of mutations (SNP, Single Nucleotide Polymorphism) detected in the three strains. By comparing the number of SNP in all three isolates and knowing the number of passages between Z5463 and Z5463PI, we concluded that around 25 bacterial divisions occurred in the human body. As expected, the in vivo passage is responsible for several modifications of phase variable genes. This genomic study has been completed by transcriptomic and phenotypic studies, showing that the blood strain used a different haemoglobin-linked iron receptor (HpuA/B) than the parental strains (HmbR). Different pilin variants were found after the in vivo passage, which expressed different properties of adhesion. Furthermore the deletion of one gene involved in LOS biosynthesis (lgtB) results in Z5463BC expressing a different LOS than the L9 immunotype of Z2491. The in vivo passage, despite the small numbers of divisions, permits the selection of numerous genomic modifications that may account for the high capacity of the strain to disseminate.


Asunto(s)
Variación Antigénica , Infección Hospitalaria/microbiología , Variación Genética , Infecciones Meningocócicas/microbiología , Neisseria meningitidis/genética , Neisseria meningitidis/inmunología , Accidentes de Trabajo , Adulto , Variación Antigénica/genética , Variación Antigénica/fisiología , Infección Hospitalaria/genética , Infección Hospitalaria/inmunología , Femenino , Genotipo , Humanos , Personal de Laboratorio Clínico , Infecciones Meningocócicas/genética , Infecciones Meningocócicas/inmunología , Infecciones Meningocócicas/transmisión , Neisseria meningitidis/fisiología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA