Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Adv Healthc Mater ; 10(9): e2002160, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33644997

RESUMEN

Nanoparticles offer great promise for more effective drug delivery. However, their particulate nature typically results in rapid systemic clearance by immune cells in blood. Currently, to understand these interactions, nanoparticle association is probed ex vivo with whole blood. While ex vivo assays give important information about the relative cell association, they do not consider changes in immune cell homeostasis or the complex mixing behavior that occurs in vivo. To address this, a nanoparticle in vivo immune-cell association assay is developed to study the in vivo association of unmodified and poly(ethylene glycol) modified liposomes with immune cells, and compared this to the ex vivo association in static whole blood. In vivo, it is observed that neutrophils play a significantly greater role in nanoparticle binding than suggested by ex vivo assays. The increased influence of neutrophils in vivo is largely due to a significant increase in number of circulating neutrophils after intravenous injection. Conversely, the number of circulating monocytes significantly decreased after intravenous injection, leading to significantly less total association of liposomes to monocytes compared to ex vivo. This novel in vivo immune cell binding assay sheds new light on the fate of nanoparticles following intravenous delivery.


Asunto(s)
Nanopartículas , Sistemas de Liberación de Medicamentos , Liposomas , Monocitos , Polietilenglicoles
2.
Stem Cells Dev ; 28(1): 1-12, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30358490

RESUMEN

The regenerative capacity of the endometrium has been attributed to resident stem/progenitor cells. A number of stem/progenitor markers have been reported for human endometrial stem/progenitor cells; however, the lack of convenient markers in the mouse has made experimental investigation into endometrial regeneration difficult. We recently identified endometrial epithelial, endothelial, and immune cells, which express a reporter for the stem/progenitor marker, mouse telomerase reverse transcriptase (mTert). In this study, we investigate the expression pattern of a green fluorescent protein (GFP) reporter for mTert promoter activity (mTert-GFP) in endometrial regeneration following a menses-like event. mTert-GFP expression marks subepithelial populations of T cells and mature macrophages and may play a role in immune cell regulated repair. Clusters of mTert-GFP-positive epithelial cells were identified close to areas of reepithelialization and possibly highlight a role for mTert in the repair and regeneration of the endometrial epithelium.


Asunto(s)
Endometrio/metabolismo , Repitelización , Telomerasa/genética , Animales , Endometrio/citología , Endometrio/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Ciclo Estral , Femenino , Ratones , Ratones Endogámicos C57BL , Telomerasa/metabolismo
3.
Reproduction ; 157(1): 43-52, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30392200

RESUMEN

Perivascular mesenchymal stem/stromal cells can be isolated from the human endometrium using the surface marker SUSD2 and are being investigated for use in tissue repair. Mesenchymal stem/stromal cells from other tissues modulate T cell responses via mechanisms including interleukin-10, prostaglandin E2, TGF-ß1 and regulatory T cells. Animal studies demonstrate that endometrial mesenchymal stem/stromal cells can also modify immune responses to implanted mesh, but the mechanism/s they employ have not been explored. We examined the immunomodulatory properties of human endometrial mesenchymal stem/stromal cells on lymphocyte proliferation using mouse splenocyte cultures. Endometrial mesenchymal stem/stromal cells inhibited mitogen-induced lymphocyte proliferation in vitro in a dose-dependent manner. Inhibition of lymphocyte proliferation was not affected by blocking the mouse interleukin-10 receptor or inhibiting prostaglandin production. Endometrial mesenchymal stem/stromal cells continued to restrain lymphocyte proliferation in the presence of an inhibitor of TGF-ß receptors, despite a reduction in regulatory T cells. Thus, the in vitro inhibition of mitogen-induced lymphocyte proliferation by endometrial mesenchymal stem/stromal cells occurs by a mechanism distinct from the interleukin-10, prostaglandin E2, TGF-ß1 and regulatory T cell-mediated mechanisms employed by MSC from other tissues. eMSCs were shown to produce interleukin-17A and Dickkopf-1 which may contribute to their immunomodulatory properties. In contrast to MSC from other sources, systemic administration of endometrial mesenchymal stem/stromal cells did not inhibit swelling in a T cell-mediated model of skin inflammation. We conclude that, while endometrial mesenchymal stem/stromal cells can modify immune responses, their immunomodulatory repertoire may not be sufficient to restrain some T cell-mediated inflammatory events.


Asunto(s)
Proliferación Celular , Endometrio/citología , Células Madre Mesenquimatosas/fisiología , Linfocitos T/fisiología , Animales , Comunicación Celular/fisiología , Células Cultivadas , Endometrio/inmunología , Endometrio/metabolismo , Femenino , Humanos , Glicoproteínas de Membrana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/fisiología
5.
Stem Cells ; 36(1): 91-102, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28913973

RESUMEN

Studies from five independent laboratories conclude that bone marrow stem cells transdifferentiate into endometrial stroma, epithelium, and endothelium. We investigated the nature of bone marrow-derived cells in the mouse endometrium by reconstituting irradiated wild type recipients with bone marrow containing transgenic mTert-green fluorescent protein (GFP) or chicken ß-actin (Ch ß-actin)-GFP reporters. mTert-GFP is a telomerase marker identifying hematopoietic stem cells and subpopulations of epithelial, endothelial, and immune cells in the endometrium. Ch ß-actin-GFP is a ubiquitous reporter previously used to identify bone marrow-derived cells in the endometrium. Confocal fluorescence microscopy for GFP and markers of endometrial and immune cells were used to characterize bone marrow-derived cells in the endometrium of transplant recipients. No evidence of GFP+ bone marrow-derived stroma, epithelium, or endothelium was observed in the endometrium of mTert-GFP or Ch ß-actin-GFP recipients. All GFP+ cells detected in the endometrium were immune cells expressing the pan leukocyte marker CD45, including CD3+ T cells and F4/80+ macrophages. Further examination of the Ch ß-actin-GFP transplant model revealed that bone marrow-derived F4/80+ macrophages immunostained weakly for CD45. These macrophages were abundant in the stroma, infiltrated the epithelial and vascular compartments, and could easily be mistaken for bone marrow-derived endometrial cells. We conclude that it is unlikely that bone marrow cells are able to transdifferentiate into endometrial stroma, epithelium, and endothelium. This result has important therapeutic implications, as the expectation that bone marrow stem cells contribute directly to endometrial regeneration is shaping strategies designed to regenerate endometrium in Asherman's syndrome and to control aberrant endometrial growth in endometriosis. Stem Cells 2018;36:91-102.


Asunto(s)
Células de la Médula Ósea/metabolismo , Trasplante de Médula Ósea/métodos , Animales , Diferenciación Celular , Linaje de la Célula , Modelos Animales de Enfermedad , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA