Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Methods Mol Biol ; 2752: 65-70, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38194028

RESUMEN

Tumor heterogeneity has a major role in the development of tumor evasion and resistance to treatments. To study and understand the intrinsic heterogeneity of cancer cells, the use of single-cell isolation technology has had a major boost in recent years, gaining ground to bulk analysis in the study of solid tumors. In the liquid biopsy field, the use of technologies for single-cell analysis has represented a major advance in the study of the heterogeneity of circulating tumor cells (CTCs), providing relevant information about therapy-resistant CTCs. However, single-cell analysis of CTCs is still challenging due to the weakness and scarcity of these cells. In this chapter, we describe a protocol for CTCs isolation at a single-cell level using the VyCAP Puncher system.


Asunto(s)
Células Neoplásicas Circulantes , Humanos , Separación Celular , Biopsia Líquida , Análisis de la Célula Individual , Tecnología
2.
Cancers (Basel) ; 15(4)2023 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-36831470

RESUMEN

Cancer-associated fibroblasts (CAFs) are important drivers in the tumor microenvironment and facilitate the growth and survival of tumor cells, as well as metastasis formation. They may travel together with tumor cells to support their survival and aid in the formation of a metastatic niche. In this study, we aimed to study circulating CAFs (cCAFs) and circulating tumor cells (CTCs) in a preclinical breast tumor model in mice in order to understand the effect of chemotherapy on cCAFs and CTC formation. Tumors with MDA-MB-231 human breast tumor cells with/without primary human mammary fibroblasts (representing CAFs) were coinjected in SCID mice to develop tumors. We found that the tumors with CAFs grew faster than tumors without CAFs. To study the effect of the stroma on CTCs and cCAFs, we isolated cells using microsieve filtration technology and established ITGA5 as a new cCAF biomarker, which showed good agreement with the CAF markers FAP and α-SMA. We found that ITGA5+ cCAFs shed in the blood of mice bearing stroma-rich coinjection-based tumors, while there was no difference in CTC formation. Although treatment with liposomal doxorubicin reduced tumor growth, it increased the numbers of both cCAFs and CTCs in blood. Moreover, cCAFs and CTCs were found to form clusters in the chemotherapy-treated mice. Altogether, these findings indicate that the tumor stroma supports tumor growth and the formation of cCAFs. Furthermore, chemotherapy may exacerbate the formation of cCAFs and CTCs, which may eventually support the formation of a metastasis niche in breast cancer.

3.
STAR Protoc ; 2(3): 100718, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34401784

RESUMEN

FACS sorting followed by single-cell RNA-sequencing (SORT-Seq) is a popular procedure to select cells of interest for single-cell transcriptomics. However, FACS is not suitable for measurement of subcellular distribution of fluorescence or for small samples (<1,000 cells). The VYCAP puncher system overcomes these limitations. Here, we describe a workflow to capture, image, and collect fluorescent human retina pigment epithelium cells for SORT-Seq using this system. The workflow can be used for any cell type with a diameter of ∼5-50 µm. For complete details on the use and execution of this protocol, please refer to Segeren et al. (2020).


Asunto(s)
Separación Celular/métodos , Microscopía Fluorescente/métodos , Análisis de la Célula Individual/métodos , Secuencia de Bases/genética , Citometría de Flujo/métodos , Perfilación de la Expresión Génica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , ARN/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma/genética , Secuenciación del Exoma/métodos , Flujo de Trabajo
4.
Transl Lung Cancer Res ; 9(4): 1093-1100, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32953488

RESUMEN

BACKGROUND: Circulating tumor cells (CTC) in non-small cell lung cancer (NSCLC) patients are a prognostic and possible therapeutic marker, but have a low frequency of appearance. Diagnostic leukapheresis (DLA) concentrates CTC and mononuclear cells from the blood. We evaluated a protocol using two VyCAP microsieves to filter DLA product of NSCLC patients and enumerate CTC, compared with CellSearch as a gold standard. METHODS: DLA was performed in NSCLC patients before starting treatment. DLA product equaling 2×108 leukocytes was diluted to 9 mL with CellSearch dilution buffer in a Transfix CTC tube. Within 72 hours the sample was filtered with a 7 µm pore microsieve and subsequently over a 5µm pore microsieve. CTC were defined as nucleated cells which stained for cytokeratin, but lacked CD45 and CD16. CellSearch detected CTC in the same volume of DLA. RESULTS: Of 29 patients a median of 1.4 mL DLA product (range, 0.5-4.1) was filtered (2% of total product) successfully in 93% and 45% of patients using 7 and 5 µm pores, respectively. Two DLA products were unevaluable for CTC detection. Clogging of the 5 µm but not 7 µm microsieves was positively correlated with fixation time (ρ=0.51, P<0.01). VyCAP detected CTC in 44% (12/27) of DLA products. Median CTC count per mL DLA was 0 [interquartile range (IQR): 0-1]. CellSearch detected CTC in 63% of DLA products (median =0.9 CTC per mL DLA, IQR: 0-2.1). CTC counts detected by CellSearch were significantly higher compared with VyCAP (P=0.05). CONCLUSIONS: VyCAP microsieves can identify CTC in DLA product, but workflows need to be optimized.

5.
Int J Mol Sci ; 20(3)2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30678037

RESUMEN

The availability of viable tumor cells could significantly improve the disease management of cancer patients. Here we developed and evaluated a method using self-seeding microwells to obtain single circulating tumor cells (CTC) and assess their potential to expand. Conditions were optimized using cells from the breast cancer cell line MCF-7 and blood from healthy volunteers collected in EDTA blood collection tubes. 43% of the MCF-7 cells (nucleus+, Ethidium homodimer-1-, Calcein AM+, α-EpCAM+, α-CD45-) spiked into 7.5 mL of blood could be recovered with 67% viability and these could be further expanded. The same procedure tested in metastatic breast and prostate cancer patients resulted in a CTC recovery of only 0⁻5% as compared with CTC counts obtained with the CellSearch® system. Viability of the detected CTC ranged from 0⁻36%. Cell losses could be mainly contributed to the smaller size and greater flexibility of CTC as compared to cultured cells from cell lines and loss during leukocyte depletion prior to cell seeding. Although CTC losses can be reduced by fixation, to obtain viable CTC no fixatives can be used and pore size in the bottom of microwells will need to be reduced, filtration conditions adapted and pre-enrichment improved to reduce CTC losses.


Asunto(s)
Separación Celular , Inmunofenotipificación , Células Neoplásicas Circulantes/metabolismo , Biomarcadores , Neoplasias de la Mama , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Separación Celular/métodos , Supervivencia Celular , Femenino , Humanos , Inmunofenotipificación/métodos , Masculino , Células Neoplásicas Circulantes/patología , Neoplasias de la Próstata
6.
Cytometry A ; 93(12): 1255-1259, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30427580

RESUMEN

Here we present the Puncher technology for the isolation of single cells. This technology combines a silicon chip with microwells, fluorescence imaging, and a punching method to isolate and transfer the single cells to standard reaction tubes. The technology is compatible with commercially available downstream workflows and instrumentation. Here we focus on the isolation of CTC but the Puncher technology can be applied to isolate single cells from liquid biopsies and more general from cell suspensions. It is especially suited for cell suspensions that contain: Cells of interest at a frequency of 1 per 10,000 or less A low total number of cells ranging from 1 to 100,000, that are present in a volume of 0.01 to 50 mL. The frequency of appearance of CTC in blood is in the order of the 1 per 106 leukocytes. To be able to isolate the single CTC with the Puncher technology, enrichment of the CTC by a 3 logs reduction of the leukocytes is required. Here we describe the use of Rosettesep and Parsortix as examples of pre-enrichment methods that are compatible with the Puncher technology and further downstream applications. © 2018 International Society for Advancement of Cytometry.


Asunto(s)
Separación Celular/métodos , Análisis de la Célula Individual/métodos , Línea Celular Tumoral , Humanos , Leucocitos/patología , Biopsia Líquida/métodos , Técnicas Analíticas Microfluídicas/métodos , Células Neoplásicas Circulantes/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA