RESUMEN
UNLABELLED: Most viruses that replicate in the cytoplasm of host cells form neo-organelles that serve as sites of viral genome replication and particle assembly. These highly specialized structures concentrate viral replication proteins and nucleic acids, prevent the activation of cell-intrinsic defenses, and coordinate the release of progeny particles. Despite the importance of inclusion complexes in viral replication, there are key gaps in the knowledge of how these organelles form and mediate their functions. Reoviruses are nonenveloped, double-stranded RNA (dsRNA) viruses that serve as tractable experimental models for studies of dsRNA virus replication and pathogenesis. Following reovirus entry into cells, replication occurs in large cytoplasmic structures termed inclusions that fill with progeny virions. Reovirus inclusions are nucleated by viral nonstructural proteins, which in turn recruit viral structural proteins for genome replication and particle assembly. Components of reovirus inclusions are poorly understood, but these structures are generally thought to be devoid of membranes. We used transmission electron microscopy and three-dimensional image reconstructions to visualize reovirus inclusions in infected cells. These studies revealed that reovirus inclusions form within a membranous network. Viral inclusions contain filled and empty viral particles and microtubules and appose mitochondria and rough endoplasmic reticulum (RER). Immunofluorescence confocal microscopy analysis demonstrated that markers of the ER and ER-Golgi intermediate compartment (ERGIC) codistribute with inclusions during infection, as does dsRNA. dsRNA colocalizes with the viral protein σNS and an ERGIC marker inside inclusions. These findings suggest that cell membranes within reovirus inclusions form a scaffold to coordinate viral replication and assembly. IMPORTANCE: Viruses alter the architecture of host cells to form an intracellular environment conducive to viral replication. This step in viral infection requires the concerted action of viral and host components and is potentially vulnerable to pharmacological intervention. Reoviruses form large cytoplasmic replication sites called inclusions, which have been described as membrane-free structures. Despite the importance of inclusions in the reovirus replication cycle, little is known about their formation and composition. We used light and electron microscopy to demonstrate that reovirus inclusions are membrane-containing structures and that the endoplasmic reticulum (ER) and the ER-Golgi intermediate compartment interact closely with these viral organelles. These findings enhance our understanding of the cellular machinery usurped by viruses to form inclusion organelles and complete an infectious cycle. This information, in turn, may foster the development of antiviral drugs that impede this essential viral replication step.
Asunto(s)
Cuerpos de Inclusión Viral/ultraestructura , Cuerpos de Inclusión Viral/virología , Membranas Intracelulares/ultraestructura , Membranas Intracelulares/virología , Reoviridae/fisiología , Ensamble de Virus , Replicación Viral , Animales , Línea Celular , Humanos , Microscopía Electrónica de TransmisiónRESUMEN
McCune-Albright syndrome (MAS) is a human genetic disorder caused by a mutation that constitutively activates the G(s)α subunit by abolishing GTP hydrolysis. MAS patients suffer from a range of endocrinopathies as well as polyostotic fibrous dysplasia of bone. We previously identified an intragenic suppressor of the MAS mutation in a yeast system, which substituted two residues in the GTP-binding site of Gpa1: L318P and D319V to suppress the constitutive activity of an R297H mutation, corresponding to the human F222P, D223V, and R201H mutations respectively. To extend these studies, the human GNAS gene was subjected to site-directed mutagenesis. Constructs expressing the MAS mutation (R201H), the MAS mutation plus the mutations homologous to the yeast suppressors (R201H, F222P/D223V), or the yeast suppressor mutation alone (F222P/D223V) were transfected into HEK293 cells, and basal and receptor-stimulated cAMP levels were measured. Expression of R201H increased the basal cAMP levels and decreased the EC(50) for hormone-stimulated cAMP production. These effects were dependent on the amount of R201H protein expressed. R201H, F222P/D223V abolished the constitutive activity of the MAS mutation and caused responses to hormone that were not different from those measured in cells expressing WT G(s)α. Interestingly, F222P/D223V behaved similar to R201H in causing increases in basal cAMP production, thus demonstrating constitutive activity. Substitution of another acidic (E) or polar (N, T, and G) amino acid at position 223 caused no suppression of R201H activity, while substitution of a second nonpolar amino acid (A) at this position partially suppressed, and the larger polar I residue completely suppressed the effects of R201H.
Asunto(s)
Alelos , Displasia Fibrosa Poliostótica/genética , Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Supresión Genética , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , AMP Cíclico , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Regulación de la Expresión Génica , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Alineación de SecuenciaRESUMEN
The double-stranded RNA virus mammalian reovirus displays broad cell, tissue, and host tropism. A critical checkpoint in the reovirus replication cycle resides within viral cytoplasmic inclusions, which are biosynthetic centers of genome multiplication and new-particle assembly. Replication of strain type 3 Dearing (T3) is arrested in Madin-Darby canine kidney (MDCK) cells at a step subsequent to inclusion development and prior to formation of genomic double-stranded RNA. This phenotype is primarily regulated by viral replication protein µ2. To understand how reovirus inclusions differ in productively and abortively infected MDCK cells, we used confocal immunofluorescence and thin-section transmission electron microscopy (TEM) to probe inclusion organization and particle morphogenesis. Although no abnormalities in inclusion morphology or viral protein localization were observed in T3-infected MDCK cells using confocal microscopy, TEM revealed markedly diminished production of mature progeny virions. T3 inclusions were less frequent and smaller than those formed by T3-T1M1, a productively replicating reovirus strain, and contained decreased numbers of complete particles. T3 replication was enhanced when cells were cultivated at 31°C, and inclusion ultrastructure at low-temperature infection more closely resembled that of a productive infection. These results indicate that particle assembly in T3-infected MDCK cells is defective, possibly due to a temperature-sensitive structural or functional property of µ2. Thus, reovirus cell tropism can be governed by interactions between viral replication proteins and the unique cell environment that modulate efficiency of particle assembly.
Asunto(s)
Cuerpos de Inclusión Viral/metabolismo , Reoviridae/fisiología , Proteínas Virales/metabolismo , Tropismo Viral , Ensamble de Virus , Replicación Viral , Animales , Línea Celular , Perros , Cuerpos de Inclusión Viral/genética , Cuerpos de Inclusión Viral/ultraestructura , Células de Riñón Canino Madin Darby , Ratones , Microscopía Electrónica de Transmisión , Fenotipo , ARN Bicatenario/metabolismo , ARN Viral/genética , Reoviridae/genética , Temperatura , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismoRESUMEN
Following attachment and internalization, mammalian reoviruses undergo intracellular proteolytic disassembly followed by viral penetration into the cytoplasm. The initiating event in reovirus disassembly is the cathepsin-mediated proteolytic degradation of viral outer capsid protein σ3. A single tyrosine-to-histidine mutation at amino acid 354 (Y354H) of strain type 3 Dearing (T3D) σ3 enhances reovirus disassembly and confers resistance to protease inhibitors such as E64. The σ3 amino acid sequence of strain type 3 Abney (T3A) differs from that of T3D at eight positions including Y354H. However, T3A displays disassembly kinetics and protease sensitivity comparable with T3D. We hypothesize that one or more additional σ3 polymorphisms suppress the Y354H phenotype and restore T3D disassembly characteristics. To test this hypothesis, we engineered a panel of reovirus variants with T3A σ3 polymorphisms introduced individually into T3D-σ3Y354H. We evaluated E64 resistance and in vitro cathepsin L susceptibility of these viruses and found that one containing a glycine-to-glutamate substitution at position 198 (G198E) displayed disassembly kinetics and E64 sensitivity similar to those properties of T3A and T3D. Additionally, viruses containing changes at positions 233 and 347 (S233L and I347T) developed de novo compensatory mutations at position 198, strengthening the conclusion that residue 198 is a key determinant of σ3 proteolytic susceptibility. Variants with Y354H in σ3 lost infectivity more rapidly than T3A or T3D following heat treatment, an effect abrogated by G198E. These results identify a regulatory network of residues that control σ3 cleavage and capsid stability, thus providing insight into the regulation of nonenveloped virus disassembly.
Asunto(s)
Proteínas de la Cápside/metabolismo , Cápside/metabolismo , Orthoreovirus de los Mamíferos/metabolismo , Proteolisis , Sustitución de Aminoácidos , Animales , Proteínas de la Cápside/genética , Catepsina L/genética , Catepsina L/metabolismo , Línea Celular , Ratones , Mutación Missense , Orthoreovirus de los Mamíferos/genética , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/metabolismoRESUMEN
Myocarditis is indicated as the second leading cause of sudden death in young adults. Reovirus induces myocarditis in neonatal mice, providing a tractable model system for investigation of this important disease. Alpha/beta-interferon (IFN-α/ß) treatment improves cardiac function and inhibits viral replication in patients with chronic myocarditis, and the host IFN-α/ß response is a determinant of reovirus strain-specific differences in induction of myocarditis. Virus-induced IFN-ß stimulates a signaling cascade that establishes an antiviral state and further induces IFN-α/ß through an amplification loop. Reovirus strain-specific differences in induction of and sensitivity to IFN-α/ß are associated with the viral M1, L2, and S2 genes. The reovirus M1 gene-encoded µ2 protein is a strain-specific repressor of IFN-ß signaling, providing one possible mechanism for the variation in resistance to IFN and induction of myocarditis between different reovirus strains. We report here that µ2 amino acid 208 determines repression of IFN-ß signaling and modulates reovirus induction of IFN-ß in cardiac myocytes. Moreover, µ2 amino acid 208 determines reovirus replication, both in initially infected cardiac myocytes and after viral spread, by regulating the IFN-ß response. Amino acid 208 of µ2 also influences the cytopathic effect in cardiac myocytes after spread. Finally, µ2 amino acid 208 modulates myocarditis in neonatal mice. Thus, repression of IFN-ß signaling mediated by reovirus µ2 amino acid 208 is a determinant of the IFN-ß response, viral replication and damage in cardiac myocytes, and myocarditis. These results demonstrate that a single amino acid difference between viruses can dictate virus strain-specific differences in suppression of the host IFN-ß response and, consequently, damage to the heart.
Asunto(s)
Regulación hacia Abajo , Interferón-alfa/metabolismo , Interferón beta/metabolismo , Miocarditis/metabolismo , Orthoreovirus de los Mamíferos/genética , Polimorfismo de Nucleótido Simple , Infecciones por Reoviridae/metabolismo , Transducción de Señal , Proteínas Virales/genética , Animales , Línea Celular , Células Cultivadas , Humanos , Interferón-alfa/genética , Interferón beta/genética , Orthoreovirus Mamífero 3/genética , Orthoreovirus Mamífero 3/metabolismo , Ratones , Miocarditis/genética , Miocarditis/virología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/virología , Orthoreovirus de los Mamíferos/metabolismo , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/virologíaRESUMEN
Mammalian reoviruses replicate in a broad range of hosts, cells, and tissues. These viruses display strain-dependent variation in tropism for different types of cells in vivo and ex vivo. Early steps in the reovirus life cycle, attachment, entry, and disassembly, have been identified as pivotal points of virus-cell interaction that determine the fate of infection, either productive or abortive. However, in studies of the differential capacity of reovirus strains type 1 Lang and type 3 Dearing to replicate in Madin-Darby canine kidney (MDCK) cells, we found that replication efficiency is regulated at a late point in the viral life cycle following primary transcription and translation. Results of genetic studies using recombinant virus strains show that reovirus tropism for MDCK cells is primarily regulated by replication protein µ2 and further influenced by the viral RNA-dependent RNA polymerase protein, λ3, depending on the viral genetic background. Furthermore, µ2 residue 347 is a critical determinant of replication efficiency in MDCK cells. These findings indicate that components of the reovirus replication complex are mediators of cell-selective viral replication capacity at a post-entry step. Thus, reovirus cell tropism may be determined at early and late points in the viral replication program.
Asunto(s)
Tropismo Viral , Replicación Viral/genética , Animales , Línea Celular , Embrión de Pollo , ARN Polimerasas Dirigidas por ADN/química , Perros , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , ARN Bicatenario , ARN Viral/metabolismo , Reoviridae/genética , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Mammalian orthoreoviruses (reoviruses) are highly useful models for studies of double-stranded RNA virus replication and pathogenesis. We previously developed a strategy to recover prototype reovirus strain T3D from cloned cDNAs transfected into murine L929 fibroblast cells. Here, we report the development of a second-generation reovirus reverse genetics system featuring several major improvements: (1) the capacity to rescue prototype reovirus strain T1L, (2) reduction of required plasmids from 10 to 4, and (3) isolation of recombinant viruses following transfection of baby hamster kidney cells engineered to express bacteriophage T7 RNA polymerase. The efficiency of virus rescue using the 4-plasmid strategy was substantially increased in comparison to the original 10-plasmid system. We observed full compatibility of T1L and T3D rescue vectors when intermixed to produce a panel of T1LxT3D monoreassortant viruses. Improvements to the reovirus reverse genetics system enhance its applicability for studies of reovirus biology and clinical use.
Asunto(s)
Vectores Genéticos/genética , Orthoreovirus de los Mamíferos/genética , Infecciones por Reoviridae/virología , Animales , Línea Celular , Cricetinae , ADN Recombinante/genética , ADN Viral/genética , Electroforesis en Gel de Poliacrilamida , Técnica del Anticuerpo Fluorescente , Plásmidos/genética , TransfecciónRESUMEN
Mammalian reoviruses are nonenveloped particles containing a genome of 10 double-stranded RNA (dsRNA) gene segments. Reovirus replication occurs within viral inclusions, which are specialized nonmembranous cytoplasmic organelles formed by viral nonstructural and structural proteins. Although these structures serve as sites for several major events in the reovirus life cycle, including dsRNA synthesis, gene segment assortment, and genome encapsidation, biochemical mechanisms of virion morphogenesis within inclusions have not been elucidated because much remains unknown about inclusion anatomy and functional organization. To better understand how inclusions support viral replication, we have used RNA interference (RNAi) and reverse genetics to define functional domains in two inclusion-associated proteins, muNS and mu2, which are interacting partners essential for inclusion development and viral replication. Removal of muNS N-terminal sequences required for association with mu2 or another muNS-binding protein, sigmaNS, prevented the capacity of muNS to support viral replication without affecting inclusion formation, indicating that muNS-mu2 and muNS-sigmaNS interactions are necessary for inclusion function but not establishment. In contrast, introduction of changes into the muNS C-terminal region, including sequences that form a putative oligomerization domain, precluded inclusion formation as well as viral replication. Mutational analysis of mu2 revealed a critical dependence of viral replication on an intact nucleotide/RNA triphosphatase domain and an N-terminal cluster of basic amino acid residues conforming to a nuclear localization motif. Another domain in mu2 governs the capacity of viral inclusions to affiliate with microtubules and thereby modulates inclusion morphology, either globular or filamentous. However, viral variants altered in inclusion morphology displayed equivalent replication efficiency. These studies reveal a modular functional organization of inclusion proteins muNS and mu2, define the importance of specific amino acid sequences and motifs in these proteins for viral replication, and demonstrate the utility of complementary RNAi-based and reverse genetic approaches for studies of reovirus replication proteins.
Asunto(s)
Reoviridae/fisiología , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral , Animales , Línea Celular , Análisis Mutacional de ADN , Silenciador del Gen , Humanos , Cuerpos de Inclusión Viral/química , Cuerpos de Inclusión Viral/virología , Ratones , Interferencia de ARN , Eliminación de SecuenciaRESUMEN
McCune-Albright syndrome (MAS) causes a variety of bone and endocrine abnormalities due to the post-zygotic mutation of the alpha subunit of the stimulatory G-protein Gsalpha. This mutation causes signal-independent activity of the G-protein in the affected cells. We report the development of a system to study the effects of MAS mutations using Saccharomyces cerevisiae, wherein activation of the yeast G-protein pathway results in growth arrest in a genetically recessive fashion. We introduced the MAS mutation into the analogous site in the yeast Galpha gene, GPA1 and randomly mutated the gene to produce intragenic suppressors. Yeast with normal and mutated G-protein genes were induced to lose the normal gene, and mutations able to intragenically suppress the constitutive activity of the MAS mutation were identified based on their ability to form colonies. We report one mutation in GPA1, also in the active site, that is an intragenic suppressor of the MAS defect.