Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Environ Microbiol Rep ; 16(3): e13213, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38738810

RESUMEN

Since a significant proportion of plant matter is consumed by herbivores, a necessary adaptation for many phyllosphere microbes could be to survive through the guts of herbivores. While many studies explore the gut microbiome of herbivores by surveying the microbiome in their frass, few studies compare the phyllosphere microbiome to the gut microbiome of herbivores. High-throughput metabarcode sequencing was used to track the fungal community from milkweed (Asclepias spp.) leaves to monarch caterpillar frass. The most commonly identified fungal taxa that dominated the caterpillar frass after the consumption of leaves were yeasts, mostly belonging to the Basidiomycota phylum. While most fungal communities underwent significant bottlenecks and some yeast taxa increased in relative abundance, a consistent directional change in community structure was not identified from leaf to caterpillar frass. These results suggest that some phyllosphere fungi, especially diverse yeasts, can survive herbivory, but whether herbivory is a key stage of their life cycle remains uncertain. For exploring phyllosphere fungi and the potential coprophilous lifestyles of endophytic and epiphytic fungi, methods that target yeast and Basidiomycota fungi are recommended.


Asunto(s)
Asclepias , Hongos , Herbivoria , Hojas de la Planta , Animales , Hojas de la Planta/microbiología , Asclepias/microbiología , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Hongos/fisiología , Levaduras/clasificación , Levaduras/aislamiento & purificación , Levaduras/genética , Micobioma , Basidiomycota/clasificación , Basidiomycota/genética , Basidiomycota/fisiología , Basidiomycota/aislamiento & purificación , Microbioma Gastrointestinal , Larva/microbiología , Mariposas Nocturnas/microbiología
2.
Nucleic Acids Res ; 52(D1): D791-D797, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37953409

RESUMEN

UNITE (https://unite.ut.ee) is a web-based database and sequence management environment for molecular identification of eukaryotes. It targets the nuclear ribosomal internal transcribed spacer (ITS) region and offers nearly 10 million such sequences for reference. These are clustered into ∼2.4M species hypotheses (SHs), each assigned a unique digital object identifier (DOI) to promote unambiguous referencing across studies. UNITE users have contributed over 600 000 third-party sequence annotations, which are shared with a range of databases and other community resources. Recent improvements facilitate the detection of cross-kingdom biological associations and the integration of undescribed groups of organisms into everyday biological pursuits. Serving as a digital twin for eukaryotic biodiversity and communities worldwide, the latest release of UNITE offers improved avenues for biodiversity discovery, precise taxonomic communication and integration of biological knowledge across platforms.


Asunto(s)
Bases de Datos de Ácidos Nucleicos , Hongos , ADN Espaciador Ribosómico , Hongos/genética , Biodiversidad , ADN de Hongos , Filogenia
3.
Phytopathology ; 112(11): 2341-2350, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35731020

RESUMEN

Dieback and mortality in wildland plant species due to climate change have been on the rise in recent decades, and latent fungal pathogens might play a significant role in these events. During a severe multiyear drought, canopy dieback associated with latent pathogens in the Botryosphaeriaceae (Bot) family was observed in stands of a dominant shrub species, big berry manzanita (Arctostaphylos glauca), across chaparral landscapes in California. These fungi are significant pathogens of woody agricultural species, especially in hosts experiencing stress, and have become a threat to economically important crops worldwide. However, little is known regarding their occurrence, distribution, and impact in wildland systems. We conducted a field survey of 300 A. glauca shrubs across an elevational gradient to identify Bot species infection as it relates to (i) A. glauca dieback severity and (ii) landscape variables associated with plant drought stress. Our results show that Bots are widely infecting A. glauca across the landscape, and there is a significant correlation between elevation and dieback severity. Dieback severity was significantly higher at lower elevations, suggesting that infected shrubs at lower elevations are at greater risk than those at higher elevations. Furthermore, two Bot species, Neofusicoccum australe and Botryosphaeria dothidea, were most frequently isolated, with N. australe being the most common and, based on haplotype analysis, likely the most recently introduced of the two. Our results confirm the wide distribution of latent Bot fungi in a wild shrubland system and provide valuable insight into areas of greatest risk for future shrub dieback and mortality. These findings could be particularly useful for informing future wildlands management strategies with regard to introduced latent pathogens.


Asunto(s)
Arctostaphylos , Frutas/microbiología , Enfermedades de las Plantas/microbiología , Sequías , Madera
4.
Am J Bot ; 109(1): 83-98, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34695224

RESUMEN

PREMISE: Foliar fungal endophytes vary in their distributions across landscapes or plant host taxa, indicative of specialized ecologies and host specific adaptations. Accounts of specialization, however, depend on the taxonomic breadth and geographic range of the host plants included in each study. A broad region-scale study or deep sampling of diverse potential host species still remains relatively rare but is becoming increasingly possible with high-throughput sequencing. METHODS: Amplicon sequencing was used to rapidly identify the fungal endophytic community among six pine (Pinus, Pinaceae) species co-occurring across northeastern United States and to test for site and host specialization. We focused on the endophytic genus Lophodermium (Rhytismataceae), whose species members are thought to specialize on different pine species, to test if amplicon sequencing could rapidly verify previously implied or discover new patterns of host specificity. RESULTS: While amplicon sequencing could analyze more samples at greater depths and recover greater numbers of unique Lophodermium taxa than when endophyte communities were surveyed with traditional culturing methods, patterns of specialization were not better supported. This may be because amplicon sequencing can indiscriminately capture non-host specific organisms found incidentally from plant tissues or because we have overestimated host-specificity in the past with biased culturing techniques. CONCLUSIONS: Amplicon sequencing can quickly identify patterns of host specificity by allowing large-scale surveys but has limitations in quantifying the level of intimacy of these relationships.


Asunto(s)
Endófitos , Pinus , ADN de Hongos , Endófitos/genética , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Especificidad del Huésped , Filogenia , Pinus/genética , Hojas de la Planta/microbiología , Especificidad de la Especie
5.
Ecol Evol ; 10(19): 10645-10656, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33072286

RESUMEN

The evolutionary stability of mutualistic interactions involving multiple partners requires "sanctioning"-the ability to influence the fitness of each partner based on its respective contribution. Sanctions must be sensitive to even small differences if even slightly less-beneficial partners could gain a fitness advantage by diverting resources away from the mutualistic service toward their own reproductive fitness. Here, we test whether legume hosts sanction even mediocre N2-fixing rhizobial strains by influencing either nodule growth (which limits rhizobial cell numbers) or carbon accumulation (polyhydroxybutryate or PHB) per rhizobial cell. We also test whether sanctions depend on the availability of less-expensive nitrogen alternatives, either as nitrate or coinoculation with a more-efficient isogenic strain. We found that nitrate eliminated differences in nodule size between the mediocre and more-efficient strains, suggesting that host sanctions were compromised. However, nitrate additions also decreased PHB accumulation by the mediocre strain, which may eliminate any fitness advantages of diverting resources from N2 fixation. Coinoculation with a more-efficient strain could also compromise host sanctions if reduction in fitness from smaller nodules does not offset the potential fitness gain from greater PHB accumulation that we observed in the mediocre strain. Hence, a host's ability to sanction mediocre strains depends not only on alternative sources of nitrogen but also the relative importance of different components of rhizobial fitness.

6.
Am J Bot ; 107(8): 1136-1147, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32864741

RESUMEN

PREMISE: Mortality events involving drought and pathogens in natural plant systems are on the rise due to global climate change. In Santa Barbara, California, United States, big berry manzanita (Arctostaphylos glauca) has experienced canopy dieback related to a multi-year drought and infection from fungal pathogens in the Botryosphaeriaceae family. A greenhouse experiment was conducted using Neofusicoccum australe to test the specific influences of drought and fungal infection on A. glauca. METHODS: A full factorial design was used to compare four treatment groups (drought + inoculation; drought - inoculation; watering + inoculation; and control: watering - inoculation). Data were collected for 10 weeks on stress symptoms, changes in leaf fluorescence and photosynthesis, and mortality. RESULTS: Results indicated significant effects of watering and inoculation treatments on net photosynthesis, dark-adapted fluorescence, and disease symptom severity (P < 0.05), and a strong correlation was found between physiological decline and visible stress (P < 0.0001). Mortality differed between treatments, with all groups except for the control experiencing mortality (43% mortality in drought - inoculation, 83% in watering - inoculation, and 100% in drought + inoculation). A Kaplan-Meier survival analysis showed drought + inoculation to have the least estimated survivorship compared to all other treatment groups. CONCLUSIONS: In addition to a possible synergistic interaction between drought and fungal infection in disease onset and mortality rates in A. glauca, these results indicate that young, non-drought-stressed plants are susceptible to mortality from N. australe infection, with important implications for the future of wildland shrub communities.


Asunto(s)
Arctostaphylos , Ascomicetos , Sequías , Fotosíntesis , Hojas de la Planta
7.
New Phytol ; 228(1): 210-225, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32472573

RESUMEN

Foliar fungal endophytes are one of the most diverse guilds of symbiotic fungi found in the photosynthetic tissues of every plant lineage, but it is unclear how plant environments and leaf resource availability shape their diversity. We explored correlations between leaf nutrient availability and endophyte diversity among Pinus muricata and Vaccinium ovatum plants growing across a soil nutrient gradient spanning a series of coastal terraces in Mendocino, California. Endophyte richness decreased in plants with higher leaf nitrogen-to-phosphorus ratios for both host species, but increased with sodium, which may be toxic to fungi at high concentrations. Isolation frequency, a proxy of fungal biomass, was not significantly predicted by any of the same leaf constituents in the two plant species. We propose that stressed plants can exhibit both low foliar nutrients or high levels of toxic compounds, and that both of these stress responses predict endophyte species richness. Stressful conditions that limit growth of fungi may increase their diversity due to the suppression of otherwise dominating species. Differences between the host species in their endophyte communities may be explained by host specificity, leaf phenology, or microclimates.


Asunto(s)
Endófitos , Plantas , Hongos , Suelo , Simbiosis
8.
BMC Genomics ; 20(1): 605, 2019 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337355

RESUMEN

BACKGROUND: Lichens, encompassing 20,000 known species, are symbioses between specialized fungi (mycobionts), mostly ascomycetes, and unicellular green algae or cyanobacteria (photobionts). Here we describe the first parallel genomic analysis of the mycobiont Cladonia grayi and of its green algal photobiont Asterochloris glomerata. We focus on genes/predicted proteins of potential symbiotic significance, sought by surveying proteins differentially activated during early stages of mycobiont and photobiont interaction in coculture, expanded or contracted protein families, and proteins with differential rates of evolution. RESULTS: A) In coculture, the fungus upregulated small secreted proteins, membrane transport proteins, signal transduction components, extracellular hydrolases and, notably, a ribitol transporter and an ammonium transporter, and the alga activated DNA metabolism, signal transduction, and expression of flagellar components. B) Expanded fungal protein families include heterokaryon incompatibility proteins, polyketide synthases, and a unique set of G-protein α subunit paralogs. Expanded algal protein families include carbohydrate active enzymes and a specific subclass of cytoplasmic carbonic anhydrases. The alga also appears to have acquired by horizontal gene transfer from prokaryotes novel archaeal ATPases and Desiccation-Related Proteins. Expanded in both symbionts are signal transduction components, ankyrin domain proteins and transcription factors involved in chromatin remodeling and stress responses. The fungal transportome is contracted, as are algal nitrate assimilation genes. C) In the mycobiont, slow-evolving proteins were enriched for components involved in protein translation, translocation and sorting. CONCLUSIONS: The surveyed genes affect stress resistance, signaling, genome reprogramming, nutritional and structural interactions. The alga carries many genes likely transferred horizontally through viruses, yet we found no evidence of inter-symbiont gene transfer. The presence in the photobiont of meiosis-specific genes supports the notion that sexual reproduction occurs in Asterochloris while they are free-living, a phenomenon with implications for the adaptability of lichens and the persistent autonomy of the symbionts. The diversity of the genes affecting the symbiosis suggests that lichens evolved by accretion of many scattered regulatory and structural changes rather than through introduction of a few key innovations. This predicts that paths to lichenization were variable in different phyla, which is consistent with the emerging consensus that ascolichens could have had a few independent origins.


Asunto(s)
Ascomicetos/genética , Chlorophyta/genética , Líquenes/genética , Simbiosis/genética , Transferencia de Gen Horizontal , Genoma Fúngico
9.
Mycologia ; 110(5): 797-810, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30230969

RESUMEN

Lophodermium is a large fungal genus consisting of over 100 named species, with ca. 38 of these commonly found as endophytes of pine needles. In this study, we use both morphological and sequencing data to describe a new Lophodermium species associated with haploxylon pines from the Pacific Northwest. This new species resembled the morphology of L. nitens, another commonly occurring species from the same geographic regions and host species. They both present dark subcuticular ascocarps without lips. However, the upper walls of their ascocarps are different, as the new species forms an inward V-shaped folding, not present in L. nitens. Phylogenies using nuc rDNA internal transcribed spacer barcodes (ITS1-5.8S-ITS2 = ITS), partial D1-D2 domains of nuc rDNA 28S, and partial sequences of the nuc actin gene confirmed that this species represents a unique lineage not closely related to L. nitens. We discuss the current state of the phylogeny in light of all currently available sequences from pine-associated Lophodermium species.


Asunto(s)
Ascomicetos/clasificación , Ascomicetos/aislamiento & purificación , Endófitos/clasificación , Endófitos/aislamiento & purificación , Filogenia , Pinus/microbiología , Ascomicetos/citología , Ascomicetos/genética , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Endófitos/citología , Endófitos/genética , Microscopía , Noroeste de Estados Unidos , Hojas de la Planta/microbiología , ARN Ribosómico 28S/genética , ARN Ribosómico 5.8S/genética , Análisis de Secuencia de ADN , Esporas Fúngicas/citología , Esporas Fúngicas/crecimiento & desarrollo
10.
Ecol Evol ; 8(13): 6638-6651, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30038763

RESUMEN

The phylogenetic and population genetic structure of symbiotic microorganisms may correlate with important ecological traits that can be difficult to directly measure, such as host preferences or dispersal rates. This study develops and tests a low-cost double-digest restriction site-associated DNA sequencing (ddRADseq) protocol to reveal among- and within-species genetic structure for Lophodermium, a genus of fungal endophytes whose evolutionary analyses have been limited by the scarcity of informative markers. The protocol avoids expensive barcoded adapters and incorporates universal indexes for multiplexing. We tested for reproducibility and functionality by comparing shared loci from sample replicates and assessed the effects of numbers of ambiguous sites and clustering thresholds on coverage depths, number of shared loci among samples, and phylogenetic reconstruction. Errors between technical replicates were minimal. Relaxing the quality-filtering criteria increased the mean coverage depth per locus and the number of loci recovered within a sample, but had little effect on the number of shared loci across samples. Increasing clustering threshold decreased the mean coverage depth per cluster and increased the number of loci recovered within a sample but also decreased the number of shared loci across samples, especially among distantly related species. The combination of low similarity clustering (70%) and relaxed quality-filtering (allowing up to 30 ambiguous sites per read) performed the best in phylogenetic analyses at both recent and deep genetic divergences. Hence, this method generated sufficient number of shared homologous loci to investigate the evolutionary relationships among divergent fungal lineages with small haploid genomes. The greater genetic resolution also revealed new structure within species that correlated with ecological traits, providing valuable insights into their cryptic life histories.

11.
Mycologia ; 110(1): 136-146, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29863992

RESUMEN

Sterile fungal isolates are often recovered in leaf and root endophytic studies, although these seldom play a significant role in downstream analyses. The authors sought to identify and characterize two such endophytes-one representing the most commonly recovered fungal isolate in recent studies of needle endophytes of Pinus taeda and the other representing a rarely isolated root endophyte of Populus trichocarpa. Both are shown by DNA sequencing to be undescribed species of Atractiellomycetes (Pucciniomycotina, Basidiomycota), a poorly characterized class of mostly plant-associated and presumably saprobic microfungi. The authors describe the new genus and species Atractidochium hillariae (Phleogenaceae) and the new species Proceropycnis hameedii (Hoehnelomycetaceae), both in the Atractiellales, to accommodate these unusual isolates. Following incubations of 1-2 mo, A. hillariae produces minute white sporodochia, similar to those produced by several other members of Atractiellales, whereas Pr. hameedii forms conidia singly or in chains in a manner similar to its sister species Pr. pinicola. Additionally, we provide a taxonomic revision of Atractiellomycetes based on multilocus analyses and propose the new genera Neogloea (Helicogloeaceae) and Bourdotigloea (Phleogenaceae) to accommodate ex-Helicogloea species that are not congeneric with the type H. lagerheimii. Atractiellomycetes consists of a single order, Atractiellales, and three families, Hoehnelomycetaceae, Phleogenaceae, and Helicogloeaceae. Accumulated evidence suggests that Atractiellomycetes species are common but infrequently isolated members of plant foliar and root endobiomes.


Asunto(s)
Basidiomycota/clasificación , Basidiomycota/aislamiento & purificación , Endófitos/clasificación , Endófitos/aislamiento & purificación , Filogenia , Pinus taeda/microbiología , Populus/microbiología , Animales , Basidiomycota/citología , Basidiomycota/genética , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Endófitos/genética , Genes de ARNr , Técnicas Microbiológicas , Microscopía , Hojas de la Planta/microbiología , Raíces de Plantas/microbiología , ARN de Hongos/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , ARN Ribosómico 5.8S/genética , Análisis de Secuencia de ADN
12.
PLoS One ; 12(12): e0189796, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29253889

RESUMEN

High-throughput sequencing technology has helped microbial community ecologists explore ecological and evolutionary patterns at unprecedented scales. The benefits of a large sample size still typically outweigh that of greater sequencing depths per sample for accurate estimations of ecological inferences. However, excluding or not sequencing rare taxa may mislead the answers to the questions 'how and why are communities different?' This study evaluates the confidence intervals of ecological inferences from high-throughput sequencing data of foliar fungal endophytes as case studies through a range of sampling efforts, sequencing depths, and taxonomic resolutions to understand how technical and analytical practices may affect our interpretations. Increasing sampling size reliably decreased confidence intervals across multiple community comparisons. However, the effects of sequencing depths on confidence intervals depended on how rare taxa influenced the dissimilarity estimates among communities and did not significantly decrease confidence intervals for all community comparisons. A comparison of simulated communities under random drift suggests that sequencing depths are important in estimating dissimilarities between microbial communities under neutral selective processes. Confidence interval analyses reveal important biases as well as biological trends in microbial community studies that otherwise may be ignored when communities are only compared for statistically significant differences.


Asunto(s)
Biota , ADN de Hongos/genética , Hongos/clasificación , Secuenciación de Nucleótidos de Alto Rendimiento , Biodiversidad , Intervalos de Confianza , Ecología , Hongos/genética , Filogenia , Pinus/microbiología , ARN Ribosómico 16S/genética
13.
Environ Microbiol ; 19(7): 2794-2805, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28640496

RESUMEN

Foliar fungal endophytes represent a diverse and species-rich plant microbiome. Their biogeography provides essential clues to their cryptic relationship with hosts and the environment in which they disperse. We present species composition, diversity, and dispersal patterns of endophytic fungi associated with needles of Pinus taeda trees across regional scales in the absence of strong environmental gradients as well as within individual trees. An empirical designation of rare and abundant taxa enlightens us on the structure of endophyte communities. We report multiple distance-decay patterns consistent with effects of dispersal limitation, largely driven by community changes in rare taxa, those taxonomic units that made up less than 0.31% of reads per sample on average. Distance-decay rates and community structure also depended on specific classes of fungi and were predominantly influenced by rare members of Dothideomycetes. Communities separated by urban areas also revealed stronger effects of distance on community similarity, confirming that host density and diversity plays an important role in symbiont biogeography, which may ultimately lead to a mosaic of functional diversity as well as rare species diversity across landscapes.


Asunto(s)
Ascomicetos/clasificación , Basidiomycota/clasificación , Endófitos/clasificación , Microbiota/genética , Pinus taeda/microbiología , Hojas de la Planta/microbiología , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Basidiomycota/genética , Basidiomycota/aislamiento & purificación , Biodiversidad , ADN de Hongos/genética , Endófitos/genética , Endófitos/metabolismo , Ambiente , Árboles/microbiología
14.
Mycologia ; 108(6): 1049-1068, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27760854

RESUMEN

Fungal taxonomy and ecology have been revolutionized by the application of molecular methods and both have increasing connections to genomics and functional biology. However, data streams from traditional specimen- and culture-based systematics are not yet fully integrated with those from metagenomic and metatranscriptomic studies, which limits understanding of the taxonomic diversity and metabolic properties of fungal communities. This article reviews current resources, needs, and opportunities for sequence-based classification and identification (SBCI) in fungi as well as related efforts in prokaryotes. To realize the full potential of fungal SBCI it will be necessary to make advances in multiple areas. Improvements in sequencing methods, including long-read and single-cell technologies, will empower fungal molecular ecologists to look beyond ITS and current shotgun metagenomics approaches. Data quality and accessibility will be enhanced by attention to data and metadata standards and rigorous enforcement of policies for deposition of data and workflows. Taxonomic communities will need to develop best practices for molecular characterization in their focal clades, while also contributing to globally useful datasets including ITS. Changes to nomenclatural rules are needed to enable validPUBLICation of sequence-based taxon descriptions. Finally, cultural shifts are necessary to promote adoption of SBCI and to accord professional credit to individuals who contribute to community resources.


Asunto(s)
Hongos/clasificación , Hongos/genética , Metagenómica/métodos , Filogenia , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética
15.
Fungal Biol ; 119(10): 917-928, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26399186

RESUMEN

Fungal endophytes represent one of the most ubiquitous plant symbionts on Earth and are phylogenetically diverse. The structure and diversity of endophyte communities have been shown to depend on host taxa and climate, but there have been relatively few studies exploring endophyte communities throughout host maturity. We compared foliar fungal endophyte communities between seedlings and adult trees of loblolly pines (Pinus taeda) at the same seasons and locations by culturing and culture-independent methods. We sequenced the internal transcribed spacer region and adjacent partial large subunit nuclear ribosomal RNA gene (ITS-LSU amplicon) to delimit operational taxonomic units and phylogenetically characterize the communities. Despite the lower infection frequency in seedlings compared to adult trees, seedling needles were receptive to a more diverse community of fungal endophytes. Culture-free method confirmed the presence of commonly cultured OTUs from adult needles but revealed several new OTUs from seedling needles that were not found with culturing methods. The two most commonly cultured OTUs in adults were rarely cultured from seedlings, suggesting that host age is correlated with a selective enrichment for specific endophytes. This shift in endophyte species dominance may be indicative of a functional change between these fungi and their loblolly pine hosts.


Asunto(s)
Biota , Endófitos/clasificación , Endófitos/aislamiento & purificación , Hongos/clasificación , Hongos/aislamiento & purificación , Pinus taeda/microbiología , Análisis por Conglomerados , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Endófitos/genética , Hongos/genética , Hongos no Clasificados , Datos de Secuencia Molecular , Filogenia , Hojas de la Planta/microbiología , ARN Ribosómico/genética , Plantones/microbiología , Análisis de Secuencia de ADN
16.
Am J Bot ; 101(8): 1362-74, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25156984

RESUMEN

UNLABELLED: • PREMISE OF THE STUDY: Fungal endophytes comprise one of the most ubiquitous groups of plant symbionts, inhabiting healthy leaves and stems of all major lineages of plants. Together, they comprise immense species richness, but little is known about the fundamental processes that generate their diversity. Exploration of their population structure is needed, especially with regard to geographic distributions and host affiliations.• METHODS: We take a multilocus approach to examine genetic variation within and among populations of Lophodermium australe, an endophytic fungus commonly associated with healthy foliage of pines in the southeastern United States. Sampling focused on two pine species ranging from montane to coastal regions of North Carolina and Virginia.• KEY RESULTS: Our sampling revealed two genetically distinct groups within Lophodermium australe. Our analysis detected less than one migrant per generation between them, indicating that they are distinct species. The species comprising the majority of isolates (major species) demonstrated a panmictic structure, whereas the species comprising the minority of isolates (cryptic species) demonstrated isolation by distance. Distantly related pine species hosted the same Lophodermium species, and host species did not influence genetic structure.• CONCLUSIONS: We present the first evidence for isolation by distance in a foliar fungal endophyte that is horizontally transmitted. Cryptic species may be common among microbial symbionts and are important to delimit when exploring their genetic structure and microevolutionary processes. The hyperdiversity of endophytic fungi may be explained in part by cryptic species without apparent ecological and morphological differences as well as genetic diversification within rare fungal species across large spatial scales.


Asunto(s)
Ascomicetos/genética , Biodiversidad , Evolución Biológica , Endófitos/genética , Variación Genética , Filogenia , Pinus/microbiología , Genética de Población , North Carolina , Hojas de la Planta/microbiología , Simbiosis , Virginia
17.
Proc Biol Sci ; 278(1718): 2698-703, 2011 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-21270038

RESUMEN

The legume-rhizobia symbiosis is a classical mutualism where fixed carbon and nitrogen are exchanged between the species. Nonetheless, the plant carbon that fuels nitrogen (N(2)) fixation could be diverted to rhizobial reproduction by 'cheaters'--rhizobial strains that fix less N(2) but potentially gain the benefit of fixation by other rhizobia. Host sanctions can decrease the relative fitness of less-beneficial reproductive bacteroids and prevent cheaters from breaking down the mutualism. However, in certain legume species, only undifferentiated rhizobia reproduce, while only terminally differentiated rhizobial bacteroids fix nitrogen. Sanctions were, therefore, tested in two legume species that host non-reproductive bacteroids. We demonstrate that even legume species that host non-reproductive bacteroids, specifically pea and alfalfa, can severely sanction undifferentiated rhizobia when bacteroids within the same nodule fail to fix N(2). Hence, host sanctions by a diverse set of legumes play a role in maintaining N(2) fixation.


Asunto(s)
Medicago sativa/microbiología , Fijación del Nitrógeno , Pisum sativum/microbiología , Rhizobium leguminosarum/crecimiento & desarrollo , Sinorhizobium meliloti/crecimiento & desarrollo , Simbiosis , Medicago sativa/metabolismo , Pisum sativum/metabolismo , Raíces de Plantas/microbiología , Rhizobium leguminosarum/genética , Rhizobium leguminosarum/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo
18.
Plant Physiol ; 154(3): 1541-8, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20837702

RESUMEN

Symbiotic rhizobia differentiate physiologically and morphologically into nitrogen-fixing bacteroids inside legume host nodules. The differentiation is apparently terminal in some legume species, such as peas (Pisum sativum) and peanuts (Arachis hypogaea), likely due to extreme cell swelling induced by the host. In other legume species, such as beans (Phaseolus vulgaris) and cowpeas (Vigna unguiculata), differentiation into bacteroids, which are similar in size and shape to free-living rhizobia, is reversible. Bacteroid modification by plants may affect the effectiveness of the symbiosis. Here, we compare symbiotic efficiency of rhizobia in two different hosts where the rhizobia differentiate into swollen nonreproductive bacteroids in one host and remain nonswollen and reproductive in the other. Two such dual-host strains were tested: Rhizobium leguminosarum A34 in peas and beans and Bradyrhizobium sp. 32H1 in peanuts and cowpeas. In both comparisons, swollen bacteroids conferred more net host benefit by two measures: return on nodule construction cost (plant growth per gram nodule growth) and nitrogen fixation efficiency (H(2) production by nitrogenase per CO(2) respired). Terminal bacteroid differentiation among legume species has evolved independently multiple times, perhaps due to the increased host fitness benefits observed in this study.


Asunto(s)
Bradyrhizobium/fisiología , Fabaceae/microbiología , Rhizobium leguminosarum/fisiología , Nódulos de las Raíces de las Plantas/microbiología , Simbiosis , Dióxido de Carbono/metabolismo , Hidrógeno/metabolismo , Fijación del Nitrógeno , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo
19.
New Phytol ; 187(2): 508-520, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20456052

RESUMEN

SUMMARY: *When rhizobia differentiate inside legume host nodules to become nitrogen-fixing bacteroids, they undergo a physiological as well as a morphological transformation. These transformations are more extreme in some legume species than others, leading to fundamental differences in rhizobial life history and evolution. Here, we analysed the distribution of different bacteroid morphologies over a legume phylogeny to understand the evolutionary history of this host-influenced differentiation. *Using existing electron micrographs and new flow cytometric analyses, bacteroid morphologies were categorized as swollen or nonswollen for 40 legume species in the subfamily Papilionoideae. Maximum likelihood and Bayesian frameworks were used to reconstruct ancestral states at the bases of all major subclades within the papilionoids. *Extreme bacteroid differentiation leading to swelling was found in five out of the six major papilionoid subclades. The inferred ancestral state for the Papilionoideae was hosting nonswollen bacteroids, indicating at least five independent origins of host traits leading to swollen bacteroids. *Repeated evolution of host traits causing bacteroid swelling indicates a possible fitness benefit to the plant. Furthermore, as bacteroid swelling is often correlated with loss of reproductive viability, the evolution of bacteroid cooperation or cheating strategies could be fundamentally different between the two bacteroid morphologies.


Asunto(s)
Evolución Molecular , Fabaceae/genética , Fabaceae/microbiología , Carácter Cuantitativo Heredable , Rhizobium/fisiología , Citometría de Flujo , Filogenia , Rhizobium/citología , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/microbiología , Especificidad de la Especie
20.
New Phytol ; 183(4): 967-979, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19594691

RESUMEN

When a single host plant is infected by more than one strain of rhizobia, they face a tragedy of the commons. Although these rhizobia benefit collectively from nitrogen fixation, which increases host-plant photosynthesis, each strain might nonetheless increase its own reproduction, relative to competing strains, by diverting resources away from nitrogen fixation. Host sanctions can limit the evolutionary success of such rhizobial cheaters (strains that would otherwise benefit by fixing less nitrogen). Host sanctions have been shown in soybean (Glycine max) nodules, where the next generation of symbiotic rhizobia is descended from bacteroids (the differentiated cells that can fix nitrogen). Evidence for sanctions is less clear in legume species that induce rhizobial dimorphism inside their nodules. There, bacteroids are swollen and cannot reproduce regardless of how much nitrogen they fix, but sanctions could reduce reproduction of their undifferentiated clonemates within the same nodule. This rhizobial dimorphism can affect rhizobial evolution, including cheating options, in ways that may affect future generations of legumes. Both the importance of sanctions to hosts and possible physiological mechanisms for sanctions may depend on whether bacteroids are potentially reproductive.


Asunto(s)
Fabaceae/fisiología , Rhizobium/fisiología , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis/fisiología , Reproducción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA