Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 28(1)2022 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-36615358

RESUMEN

According to the 2021 World Drug Report, around 275 million people use drugs of abuse, and 36 million people suffer from addiction, fostering a thriving market for illicit substances. In Italy, 30,083 people were reported to the Judicial Authority for offenses in violation of the Italian Law D.P.R. 309/1990. These offences are sentenced after a qualitative-quantitative analysis of seized materials. Given the large quantity of seized drugs and the need to perform accurate analytical determinations, Italian forensic laboratories struggle to complete analyses in a short time, delaying the entire reporting process needed to achieve sentencing. For this purpose, an UHPLC-MS/MS-based platform was developed at the University of Milano-Bicocca to support law-enforcement authorities. Software was designed to easily manage street seizure acquisition, documentation registration, and sampling. A sensitive UHPLC-MS/MS method was fully validated for the quantification of the traditional illicit substances (cocaine, heroin, 6-MAM, morphine, amphetamine, methamphetamine, MDMA, ketamine, GHB, GBL, LSD, trans-∆9-THC, and THCA) at the ppb level. The final report is relayed to the Prefecture in 3-4 days, even within 24 h for urgent requests. The platform allows for semi-automatic data handling to minimize erroneous results for an accurate report generation by standardized procedures.


Asunto(s)
Drogas Ilícitas , Metanfetamina , Humanos , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión , Drogas Ilícitas/análisis , Anfetamina , Detección de Abuso de Sustancias/métodos
2.
Molecules ; 26(23)2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34885837

RESUMEN

Neural networks are rapidly gaining popularity in chemical modeling and Quantitative Structure-Activity Relationship (QSAR) thanks to their ability to handle multitask problems. However, outcomes of neural networks depend on the tuning of several hyperparameters, whose small variations can often strongly affect their performance. Hence, optimization is a fundamental step in training neural networks although, in many cases, it can be very expensive from a computational point of view. In this study, we compared four of the most widely used approaches for tuning hyperparameters, namely, grid search, random search, tree-structured Parzen estimator, and genetic algorithms on three multitask QSAR datasets. We mainly focused on parsimonious optimization and thus not only on the performance of neural networks, but also the computational time that was taken into account. Furthermore, since the optimization approaches do not directly provide information about the influence of hyperparameters, we applied experimental design strategies to determine their effects on the neural network performance. We found that genetic algorithms, tree-structured Parzen estimator, and random search require on average 0.08% of the hours required by grid search; in addition, tree-structured Parzen estimator and genetic algorithms provide better results than random search.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA