Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
1.
Front Oncol ; 14: 1471257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39376983

RESUMEN

Implementation of standardized protocols in neurooncology during the surgical resection of brain tumors is needed to advance the clinical treatment paradigms that use tissue for diagnosis, prognosis, bio-banking, and treatment. Currently recommendations on intraoperative tissue procurement only exist for diffuse gliomas but management of other brain tumor subtypes can also benefit from these protocols. Fresh tissue from surgical resection can now be used for intraoperative diagnostics and functional precision medicine assays. A multidisciplinary neuro-oncology perspective is critical to develop the best avenues for practical standardization. This perspective from the multidisciplinary Oncology Tissue Advisory Board (OTAB) discusses current advances, future directions, and the imperative of adopting standardized protocols for diverse brain tumor entities. There is a growing need for consistent operating room practices to enhance patient care, streamline research efforts, and optimize outcomes.

2.
NPJ Precis Oncol ; 8(1): 218, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39358389

RESUMEN

As part of the advancement in therapeutic decision-making for brain tumor patients at St. Jude Children's Research Hospital (SJCRH), we developed three robust classifiers, a deep learning neural network (NN), k-nearest neighbor (kNN), and random forest (RF), trained on a reference series DNA-methylation profiles to classify central nervous system (CNS) tumor types. The models' performance was rigorously validated against 2054 samples from two independent cohorts. In addition to classic metrics of model performance, we compared the robustness of the three models to reduced tumor purity, a critical consideration in the clinical utility of such classifiers. Our findings revealed that the NN model exhibited the highest accuracy and maintained a balance between precision and recall. The NN model was the most resistant to drops in performance associated with a reduction in tumor purity, showing good performance until the purity fell below 50%. Through rigorous validation, our study emphasizes the potential of DNA-methylation-based deep learning methods to improve precision medicine for brain tumor classification in the clinical setting.

3.
Acta Neuropathol Commun ; 12(1): 143, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39228008

RESUMEN

Neuroepithelial tumors with fusion of PLAGL1 or amplification of PLAGL1/PLAGL2 have recently been described often with ependymoma-like or embryonal histology respectively. To further evaluate emerging entities with PLAG-family genetic alterations, the histologic, molecular, clinical, and imaging features are described for 8 clinical cases encountered at St. Jude (EWSR1-PLAGL1 fusion n = 6; PLAGL1 amplification n = 1; PLAGL2 amplification n = 1). A histologic feature observed on initial resection in a subset (4/6) of supratentorial neuroepithelial tumors with EWSR1-PLAGL1 rearrangement was the presence of concurrent ependymal and ganglionic differentiation. This ranged from prominent clusters of ganglion cells within ependymoma/subependymoma-like areas, to interspersed ganglion cells of low to moderate frequency among otherwise ependymal-like histology, or focal areas with a ganglion cell component. When present, the combination of ependymal-like and ganglionic features within a supratentorial neuroepithelial tumor may raise consideration for an EWSR1-PLAGL1 fusion, and prompt initiation of appropriate molecular testing such as RNA sequencing and methylation profiling. One of the EWSR1-PLAGL1 fusion cases showed subclonal INI1 loss in a region containing small clusters of rhabdoid/embryonal cells, and developed a prominent ganglion cell component on recurrence. As such, EWSR1-PLAGL1 neuroepithelial tumors are a tumor type in which acquired inactivation of SMARCB1 and development of AT/RT features may occur and lead to clinical progression. In contrast, the PLAGL2 and PLAGL1 amplified cases showed either embryonal histology or contained an embryonal component with a significant degree of desmin staining, which could also serve to raise consideration for a PLAG entity when present. Continued compilation of associated clinical data and histopathologic findings will be critical for understanding emerging entities with PLAG-family genetic alterations.


Asunto(s)
Proteína EWS de Unión a ARN , Neoplasias Supratentoriales , Factores de Transcripción , Humanos , Neoplasias Supratentoriales/genética , Neoplasias Supratentoriales/patología , Femenino , Proteína EWS de Unión a ARN/genética , Masculino , Factores de Transcripción/genética , Niño , Neoplasias Neuroepiteliales/genética , Neoplasias Neuroepiteliales/patología , Preescolar , Adolescente , Adulto , Proteínas de Unión al ADN/genética , Adulto Joven , Diferenciación Celular , Proteínas de Fusión Oncogénica/genética , Epéndimo/patología , Reordenamiento Génico/genética , Proteínas Cromosómicas no Histona/genética
4.
Cancer Manag Res ; 16: 1141-1153, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39263332

RESUMEN

Adrenocortical tumors (ACTs) are infrequent neoplasms in children and adolescents and are typically associated with clinical symptoms reflective of androgen overproduction. Pediatric ACTs typically occur in the context of a germline TP53 mutation, can be cured when diagnosed at an early stage, but are difficult to treat when advanced or associated with concurrent TP53 and ATRX alterations. Recent work has demonstrated DNA methylation patterns suggestive of prognostic significance. While current treatment standards rely heavily upon surgical resection, chemotherapy, and hormonal modulation, small cohort studies suggest promise for multi-tyrosine kinases targeting anti-angiogenic pathways or immunomodulatory therapies. Future work will focus on novel risk stratification algorithms and combination therapies intended to mitigate toxicity for patients with perceived low-risk disease while intensifying therapy or accelerating discoveries aimed at improving survival for patients with difficult-to-treat disease.

7.
Pediatr Blood Cancer ; 71(10): e31208, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39034595

RESUMEN

BACKGROUND: Survival data for recurrent pediatric atypical teratoid rhabdoid tumor (ATRT) and its association to molecular groups are extremely limited. METHODS: Single-institution retrospective study of 64 children less than 21 years old with recurrent or treatment-refractory (progressive disease [PD]) ATRT treated at St. Jude Hospital from January 2000 to December 2020. Demographic, clinicopathologic, treatment, molecular grouping (SHH, TYR, and MYC) and germline data were collected. Progression-free survival (PFS2: time from PD to subsequent first progression) and overall survival (OSpostPD: time from PD to death/last follow-up) were estimated by Kaplan-Meier analysis. RESULTS: Median age at and time from initial diagnosis to PD were 2.1 years (range: 0.5-17.9 years) and 5.4 months (range: 0.5-125.6 months), respectively. Only five of 64 children (7.8%) are alive at median follow-up of 10.9 (range: 4.2-18.1) years from PD. The 2/5-year PFS2 and OSpostPD were 3.1% (±1.8%)/1.6% (±1.1%) and 20.3% (±4.8%)/7.3% (±3.5%), respectively. Children with TYR group (n = 10) had a better OSpostPD compared to those with MYC (n = 11) (2-year survival estimates: 60.0% ± 14.3% vs. 18.2% ± 9.5%; p = .019), or those with SHH (n = 21; 4.8% ± 3.3%; p = .014). In univariate analyses, OSpostPD was better with older age at diagnosis (p = .037), female gender (p = .008), and metastatic site of PD compared to local or combined sites of PD (p < .001). Two-year OSpostPD for patients receiving any salvage therapy (n = 39) post PD was 33.3% ± 7.3%. CONCLUSIONS: Children with recurrent/refractory ATRT have dismal outcomes. Older age at diagnosis, female gender, TYR group, and metastatic site of PD were associated with relatively longer survival in our study.


Asunto(s)
Recurrencia Local de Neoplasia , Tumor Rabdoide , Teratoma , Humanos , Tumor Rabdoide/mortalidad , Tumor Rabdoide/terapia , Tumor Rabdoide/patología , Masculino , Femenino , Niño , Preescolar , Estudios Retrospectivos , Lactante , Adolescente , Recurrencia Local de Neoplasia/patología , Recurrencia Local de Neoplasia/mortalidad , Teratoma/mortalidad , Teratoma/patología , Teratoma/terapia , Tasa de Supervivencia , Estudios de Seguimiento , Pronóstico , Recién Nacido , Biomarcadores de Tumor/genética
8.
Radiology ; 311(2): e232521, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38742969

RESUMEN

Background Cerebellar mutism syndrome (CMS), a complication following medulloblastoma surgery, has been linked to dentato-thalamo-cortical tract (DTCT) injury; the association of the degree of DTCT injury with severity of CMS-related symptoms has not been investigated. Purpose To investigate the association between severity of CMS-related symptoms and degree and patterns of DTCT injury with use of diffusion tensor imaging (DTI), and if laterality of injury influences neurologic symptoms. Materials and Methods This retrospective case-control study used prospectively collected clinical and DTI data on patients with medulloblastoma enrolled in a clinical trial (between July 2016 and February 2020) and healthy controls (between April and November 2017), matched with the age range of the participants with medulloblastoma. CMS was divided into types 1 (CMS1) and 2 (CMS2). Multivariable logistic regression was used to investigate the relationship between CMS likelihood and DTCT injury. Results Overall, 82 participants with medulloblastoma (mean age, 11.0 years ± 5.2 [SD]; 53 male) and 35 healthy controls (mean age, 18.0 years ± 3.06; 18 female) were included. In participants with medulloblastoma, DTCT was absent bilaterally (AB), absent on the right side (AR), absent on the left side (AL), or present bilaterally (PB), while it was PB in all healthy controls. Odds of having CMS were associated with higher degree of DTCT damage (AB, odds ratio = 272.7 [95% CI: 269.68, 275.75; P < .001]; AR, odds ratio = 14.40 [95% CI: 2.84, 101.48; P < .001]; and AL, odds ratio = 8.55 [95% CI: 1.15, 74.14; P < .001). Left (coefficient = -0.07, χ2 = 12.4, P < .001) and right (coefficient = -0.15, χ2 = 33.82, P < .001) DTCT volumes were negatively associated with the odds of CMS. More participants with medulloblastoma with AB showed CMS1; unilateral DTCT absence prevailed in CMS2. Lower DTCT volumes correlated with more severe ataxia. Unilateral DTCT injury caused ipsilateral dysmetria; AB caused symmetric dysmetria. PB indicated better neurologic outcome. Conclusion The severity of CMS-associated mutism, ataxia, and dysmetria was associated with DTCT damage severity. DTCT damage patterns differed between CMS1 and CMS2. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Dorigatti Soldatelli and Ertl-Wagner in this issue.


Asunto(s)
Neoplasias Cerebelosas , Imagen de Difusión Tensora , Meduloblastoma , Mutismo , Complicaciones Posoperatorias , Humanos , Meduloblastoma/cirugía , Meduloblastoma/diagnóstico por imagen , Masculino , Femenino , Mutismo/etiología , Mutismo/diagnóstico por imagen , Imagen de Difusión Tensora/métodos , Estudios Retrospectivos , Niño , Estudios de Casos y Controles , Adolescente , Neoplasias Cerebelosas/diagnóstico por imagen , Neoplasias Cerebelosas/cirugía , Complicaciones Posoperatorias/diagnóstico por imagen , Vías Nerviosas/diagnóstico por imagen , Tálamo/diagnóstico por imagen
9.
J Neuropathol Exp Neurol ; 83(6): 416-424, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38699943

RESUMEN

Ganglioglioma (GG) with anaplasia (anaplastic ganglioglioma) is a rare and controversial diagnosis. When present, anaplasia involves the glial component of the tumor, either at presentation or at recurrence. To date, most published cases lack molecular characterization. We describe the histologic and molecular features of 3 patients presenting with BRAF p. V600E-mutant GG (CNS WHO grade 1) with high-grade glial transformation at recurrence. The tumors occurred in pediatric patients (age 9-16 years) with time to recurrence from 20 months to 7 years. At presentation, each tumor was low-grade, with a BRAFV600E-positive ganglion cell component and a glial component resembling pleomorphic xanthoastrocytoma (PXA) or fibrillary astrocytoma. At recurrence, tumors resembled anaplastic PXA or high-grade astrocytomas without neuronal differentiation. CDKN2A homozygous deletion (HD) was absent in all primary tumors. At recurrence, 2 cases acquired CDKN2A HD; the third case showed loss of p16 and MTAP immunoexpression, but no CDKN2A/B HD or mutation was identified. By DNA methylation profiling, all primary and recurrent tumors either grouped or definitely matched to different methylation classes. Our findings indicate that malignant progression of the glial component can occur in GG and suggest that CDKN2A/B inactivation plays a significant role in this process.


Asunto(s)
Neoplasias Encefálicas , Ganglioglioma , Humanos , Ganglioglioma/genética , Ganglioglioma/patología , Adolescente , Niño , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Masculino , Femenino , Proteínas Proto-Oncogénicas B-raf/genética , Epigénesis Genética , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología
10.
Nat Commun ; 15(1): 3483, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664416

RESUMEN

Chemical discovery efforts commonly target individual protein domains. Many proteins, including the EP300/CBP histone acetyltransferases (HATs), contain several targetable domains. EP300/CBP are critical gene-regulatory targets in cancer, with existing high potency inhibitors of either the catalytic HAT domain or protein-binding bromodomain (BRD). A domain-specific inhibitory approach to multidomain-containing proteins may identify exceptional-responding tumor types, thereby expanding a therapeutic index. Here, we discover that targeting EP300/CBP using the domain-specific inhibitors, A485 (HAT) or CCS1477 (BRD) have different effects in select tumor types. Group 3 medulloblastoma (G3MB) cells are especially sensitive to BRD, compared with HAT inhibition. Structurally, these effects are mediated by the difluorophenyl group in the catalytic core of CCS1477. Mechanistically, bromodomain inhibition causes rapid disruption of genetic dependency networks that are required for G3MB growth. These studies provide a domain-specific structural foundation for drug discovery efforts targeting EP300/CBP and identify a selective role for the EP300/CBP bromodomain in maintaining genetic dependency networks in G3MB.


Asunto(s)
Proteína p300 Asociada a E1A , Redes Reguladoras de Genes , Meduloblastoma , Humanos , Meduloblastoma/genética , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/metabolismo , Meduloblastoma/patología , Proteína p300 Asociada a E1A/metabolismo , Proteína p300 Asociada a E1A/genética , Proteína p300 Asociada a E1A/antagonistas & inhibidores , Línea Celular Tumoral , Redes Reguladoras de Genes/efectos de los fármacos , Animales , Dominios Proteicos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Ratones , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Antineoplásicos/farmacología
11.
Brain Pathol ; : e13256, 2024 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-38523251

RESUMEN

Meningeal solitary fibrous tumors (SFT) are rare and have a high frequency of local recurrence and distant metastasis. In a cohort of 126 patients (57 female, 69 male; mean age at surgery 53.0 years) with pathologically confirmed meningeal SFTs with extended clinical follow-up (median 9.9 years; range 15 days-43 years), we performed extensive molecular characterization including genome-wide DNA methylation profiling (n = 80) and targeted TERT promoter mutation testing (n = 98). Associations were examined with NAB2::STAT6 fusion status (n = 101 cases; 51 = ex5-7::ex16-17, 26 = ex4::ex2-3; 12 = ex2-3::exANY/other and 12 = no fusion) and placed in the context of 2021 Central Nervous System (CNS) WHO grade. NAB2::STAT6 fusion breakpoints (fusion type) were significantly associated with metastasis-free survival (MFS) (p = 0.03) and, on multivariate analysis, disease-specific survival (DSS) when adjusting for CNS WHO grade (p = 0.03). DNA methylation profiling revealed three distinct clusters: Cluster 1 (n = 38), Cluster 2 (n = 22), and Cluster 3 (n = 20). Methylation clusters were significantly associated with fusion type (p < 0.001), with Cluster 2 harboring ex4::ex2-3 fusion in 16 (of 20; 80.0%), nearly all TERT promoter mutations (7 of 8; 87.5%), and predominantly an "SFT" histologic phenotype (15 of 22; 68.2%). Clusters 1 and 3 were less distinct, both dominated by tumors having ex5-7::ex16-17 fusion (respectively, 25 of 33; 75.8%, and 12 of 18; 66.7%) and with variable histological phenotypes. Methylation clusters were significantly associated with MFS (p = 0.027), but not overall survival (OS). In summary, NAB2::STAT6 fusion type was significantly associated with MFS and DSS, suggesting that tumors with an ex5::ex16-17 fusion may have inferior patient outcomes. Methylation clusters were significantly associated with fusion type, TERT promoter mutation status, histologic phenotype, and MFS.

13.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38260392

RESUMEN

Neuroblastoma is a pediatric cancer arising from the developing sympathoadrenal lineage with complex inter- and intra-tumoral heterogeneity. To chart this complexity, we generated a comprehensive cell atlas of 55 neuroblastoma patient tumors, collected from two pediatric cancer institutions, spanning a range of clinical, genetic, and histologic features. Our atlas combines single-cell/nucleus RNA-seq (sc/scRNA-seq), bulk RNA-seq, whole exome sequencing, DNA methylation profiling, spatial transcriptomics, and two spatial proteomic methods. Sc/snRNA-seq revealed three malignant cell states with features of sympathoadrenal lineage development. All of the neuroblastomas had malignant cells that resembled sympathoblasts and the more differentiated adrenergic cells. A subset of tumors had malignant cells in a mesenchymal cell state with molecular features of Schwann cell precursors. DNA methylation profiles defined four groupings of patients, which differ in the degree of malignant cell heterogeneity and clinical outcomes. Using spatial proteomics, we found that neuroblastomas are spatially compartmentalized, with malignant tumor cells sequestered away from immune cells. Finally, we identify spatially restricted signaling patterns in immune cells from spatial transcriptomics. To facilitate the visualization and analysis of our atlas as a resource for further research in neuroblastoma, single cell, and spatial-omics, all data are shared through the Human Tumor Atlas Network Data Commons at www.humantumoratlas.org.

14.
Neuro Oncol ; 26(6): 1042-1051, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38243818

RESUMEN

BACKGROUND: Isocitrate dehydrogenase (IDH) mutant astrocytoma grading, until recently, has been entirely based on morphology. The 5th edition of the Central Nervous System World Health Organization (WHO) introduces CDKN2A/B homozygous deletion as a biomarker of grade 4. We sought to investigate the prognostic impact of DNA methylation-derived molecular biomarkers for IDH mutant astrocytoma. METHODS: We analyzed 98 IDH mutant astrocytomas diagnosed at NYU Langone Health between 2014 and 2022. We reviewed DNA methylation subclass, CDKN2A/B homozygous deletion, and ploidy and correlated molecular biomarkers with histological grade, progression free (PFS), and overall (OS) survival. Findings were confirmed using 2 independent validation cohorts. RESULTS: There was no significant difference in OS or PFS when stratified by histologic WHO grade alone, copy number complexity, or extent of resection. OS was significantly different when patients were stratified either by CDKN2A/B homozygous deletion or by DNA methylation subclass (P value = .0286 and .0016, respectively). None of the molecular biomarkers were associated with significantly better PFS, although DNA methylation classification showed a trend (P value = .0534). CONCLUSIONS: The current WHO recognized grading criteria for IDH mutant astrocytomas show limited prognostic value. Stratification based on DNA methylation shows superior prognostic value for OS.


Asunto(s)
Astrocitoma , Biomarcadores de Tumor , Neoplasias Encefálicas , Inhibidor p16 de la Quinasa Dependiente de Ciclina , Metilación de ADN , Isocitrato Deshidrogenasa , Mutación , Humanos , Astrocitoma/genética , Astrocitoma/patología , Astrocitoma/mortalidad , Isocitrato Deshidrogenasa/genética , Masculino , Pronóstico , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Persona de Mediana Edad , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/mortalidad , Adulto , Inhibidor p15 de las Quinasas Dependientes de la Ciclina/genética , Anciano , Tasa de Supervivencia , Estudios de Seguimiento , Adulto Joven , Homocigoto , Eliminación de Gen
16.
Neuro Oncol ; 26(1): 178-190, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-37503880

RESUMEN

BACKGROUND: High-grade gliomas (HGG) in young children pose a challenge due to favorable but unpredictable outcomes. While retrospective studies broadened our understanding of tumor biology, prospective data is lacking. METHODS: A cohort of children with histologically diagnosed HGG from the SJYC07 trial was augmented with nonprotocol patients with HGG treated at St. Jude Children's Research Hospital from November 2007 to December 2020. DNA methylome profiling and whole genome, whole exome, and RNA sequencing were performed. These data were integrated with histopathology to yield an integrated diagnosis. Clinical characteristics and preoperative imaging were analyzed. RESULTS: Fifty-six children (0.0-4.4 years) were identified. Integrated analysis split the cohort into four categories: infant-type hemispheric glioma (IHG), HGG, low-grade glioma (LGG), and other-central nervous system (CNS) tumors. IHG was the most prevalent (n = 22), occurred in the youngest patients (median age = 0.4 years), and commonly harbored receptor tyrosine kinase gene fusions (7 ALK, 2 ROS1, 3 NTRK1/2/3, 4 MET). The 5-year event-free (EFS) and overall survival (OS) for IHG was 53.13% (95%CI: 35.52-79.47) and 90.91% (95%CI: 79.66-100.00) vs. 0.0% and 16.67% (95%CI: 2.78-99.74%) for HGG (p = 0.0043, p = 0.00013). EFS and OS were not different between IHG and LGG (p = 0.95, p = 0.43). Imaging review showed IHGs are associated with circumscribed margins (p = 0.0047), hemispheric location (p = 0.0010), and intratumoral hemorrhage (p = 0.0149). CONCLUSIONS: HGG in young children is heterogeneous and best defined by integrating histopathological and molecular features. Patients with IHG have relatively good outcomes, yet they endure significant deficits, making them good candidates for therapy de-escalation and trials of molecular targeted therapy.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Lactante , Humanos , Preescolar , Estudios Retrospectivos , Estudios Prospectivos , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas , Glioma/tratamiento farmacológico , Glioma/genética , Glioma/diagnóstico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética
17.
Neuro Oncol ; 25(10): 1895-1909, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37534924

RESUMEN

BACKGROUND: Distinguishing the cellular origins of childhood brain tumors is key for understanding tumor initiation and identifying lineage-restricted, tumor-specific therapeutic targets. Previous strategies to map the cell-of-origin typically involved comparing human tumors to murine embryonal tissues, which is potentially limited due to species-specific differences. The aim of this study was to unravel the cellular origins of the 3 most common pediatric brain tumors, ependymoma, pilocytic astrocytoma, and medulloblastoma, using a developing human cerebellar atlas. METHODS: We used a single-nucleus atlas of the normal developing human cerebellum consisting of 176 645 cells as a reference for an in-depth comparison to 4416 bulk and single-cell transcriptome tumor datasets, using gene set variation analysis, correlation, and single-cell matching techniques. RESULTS: We find that the astroglial cerebellar lineage is potentially the origin for posterior fossa ependymomas. We propose that infratentorial pilocytic astrocytomas originate from the oligodendrocyte lineage and MHC II genes are specifically enriched in these tumors. We confirm that SHH and Group 3/4 medulloblastomas originate from the granule cell and unipolar brush cell lineages. Radiation-induced gliomas stem from cerebellar glial lineages and demonstrate distinct origins from the primary medulloblastoma. We identify tumor genes that are expressed in the cerebellar lineage of origin, and genes that are tumor specific; both gene sets represent promising therapeutic targets for future study. CONCLUSION: Based on our results, individual cells within a tumor may resemble different cell types along a restricted developmental lineage. Therefore, we suggest that tumors can arise from multiple cellular states along the cerebellar "lineage of origin."


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Neoplasias Cerebelosas , Ependimoma , Glioma , Meduloblastoma , Niño , Humanos , Animales , Ratones , Meduloblastoma/genética , Meduloblastoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Glioma/patología , Astrocitoma/genética , Ependimoma/genética , Ependimoma/patología , Cerebelo/patología , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología
19.
Neurooncol Adv ; 5(1): vdad045, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37215955

RESUMEN

Background: Radiogenomic studies of adult-type diffuse gliomas have used magnetic resonance imaging (MRI) data to infer tumor attributes, including abnormalities such as IDH-mutation status and 1p19q deletion. This approach is effective but does not generalize to tumor types that lack highly recurrent alterations. Tumors have intrinsic DNA methylation patterns and can be grouped into stable methylation classes even when lacking recurrent mutations or copy number changes. The purpose of this study was to prove the principle that a tumor's DNA-methylation class could be used as a predictive feature for radiogenomic modeling. Methods: Using a custom DNA methylation-based classification model, molecular classes were assigned to diffuse gliomas in The Cancer Genome Atlas (TCGA) dataset. We then constructed and validated machine learning models to predict a tumor's methylation family or subclass from matched multisequence MRI data using either extracted radiomic features or directly from MRI images. Results: For models using extracted radiomic features, we demonstrated top accuracies above 90% for predicting IDH-glioma and GBM-IDHwt methylation families, IDH-mutant tumor methylation subclasses, or GBM-IDHwt molecular subclasses. Classification models utilizing MRI images directly demonstrated average accuracies of 80.6% for predicting methylation families, compared to 87.2% and 89.0% for differentiating IDH-mutated astrocytomas from oligodendrogliomas and glioblastoma molecular subclasses, respectively. Conclusions: These findings demonstrate that MRI-based machine learning models can effectively predict the methylation class of brain tumors. Given appropriate datasets, this approach could generalize to most brain tumor types, expanding the number and types of tumors that could be used to develop radiomic or radiogenomic models.

20.
Neurooncol Adv ; 5(1): vdad049, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197736

RESUMEN

Diffuse leptomeningeal glioneuronal tumor (DLGNT) occurs predominantly in children and is typically characterized by diffuse leptomeningeal lesions throughout the neuroaxis with focal segments of parenchymal involvement. Recent reports have identified cases without diffuse leptomeningeal involvement that retain classic glioneuronal features on histology. In this report, we present a case of a 4-year-old boy with a large cystic-solid intramedullary spinal cord lesion that on surgical biopsy revealed a biphasic astrocytic tumor with sparsely distributed eosinophilic granular bodies and Rosenthal fibers. Next-generation sequencing revealed a KIAA1549-BRAF fusion, 1p/19q codeletion, and lack of an IDH1 mutation. Methylation profiling demonstrated a calibrated class score of 0.98 for DLGNT and copy number loss of 1p. Despite the morphologic similarities to pilocytic astrocytoma and the lack of oligodendroglial/neuronal components or leptomeningeal dissemination, the molecular profile was definitive in classifying the tumor as DLGNT. This case highlights the importance of molecular and genetic testing in the characterization of pediatric central nervous system tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA