Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Bone ; 151: 116021, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34087386

RESUMEN

The age at which astronauts experience microgravity is a critical consideration for skeletal health and similarly has clinical relevance for musculoskeletal disuse on Earth. While astronauts are extensively studied for bone and other physiological changes, rodent studies enable direct evaluation of skeletal changes with microgravity. Yet, mouse spaceflight studies have predominately evaluated tissues from young, growing mice. We evaluated bone microarchitecture in tibiae and femurs from Young (9-week-old) and Mature (32-weeks-old) female, C57BL/6N mice flown in microgravity for ~2 and ~3 weeks, respectively. Microgravity-induced changes were both compartment- and site-specific. Changes were greater in trabecular versus cortical bone in Mature mice exposed to microgravity (-40.0% Tb. BV/TV vs -4.4% Ct. BV/TV), and bone loss was greater in the proximal tibia as compared to the distal femur. Trabecular thickness in Young mice increased by +25.0% on Earth and no significant difference following microgravity. In Mature mice exposed to microgravity, trabecular thickness rapidly decreased (-24.5%) while no change was detected in age-matched mice that were maintained on Earth. Mature mice exposed to microgravity experienced greater bone loss than Young mice with net skeletal growth. Moreover, machine learning classification models confirmed that microgravity exposure-driven decrements in trabecular microarchitecture and cortical structure occurred disproportionately in Mature than in Young mice. Our results suggest that age of disuse onset may have clinical implications in osteoporotic or other at-risk populations on Earth and may contribute to understanding bone loss patterns in astronauts.


Asunto(s)
Enfermedades Óseas Metabólicas , Ingravidez , Animales , Densidad Ósea , Femenino , Fémur/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Ingravidez/efectos adversos
2.
PLoS One ; 15(4): e0230818, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32315311

RESUMEN

The microgravity conditions of prolonged spaceflight are known to result in skeletal muscle atrophy that leads to diminished functional performance. To assess if inhibition of the growth factor myostatin has potential to reverse these effects, mice were treated with a myostatin antibody while housed on the International Space Station. Grip strength of ground control mice increased 3.1% compared to baseline values over the 6 weeks of the study, whereas grip strength measured for the first time in space showed flight animals to be -7.8% decreased in strength compared to baseline values. Control mice in space exhibited, compared to ground-based controls, a smaller increase in DEXA-measured muscle mass (+3.9% vs +5.6% respectively) although the difference was not significant. All individual flight limb muscles analyzed (except for the EDL) weighed significantly less than their ground counterparts at the study end (range -4.4% to -28.4%). Treatment with myostatin antibody YN41 was able to prevent many of these space-induced muscle changes. YN41 was able to block the reduction in muscle grip strength caused by spaceflight and was able to significantly increase the weight of all muscles of flight mice (apart from the EDL). Muscles of YN41-treated flight mice weighed as much as muscles from Ground IgG mice, with the exception of the soleus, demonstrating the ability to prevent spaceflight-induced atrophy. Muscle gene expression analysis demonstrated significant effects of microgravity and myostatin inhibition on many genes. Gamt and Actc1 gene expression was modulated by microgravity and YN41 in opposing directions. Myostatin inhibition did not overcome the significant reduction of microgravity on femoral BMD nor did it increase femoral or vertebral BMD in ground control mice. In summary, myostatin inhibition may be an effective countermeasure to detrimental consequences of skeletal muscle under microgravity conditions.


Asunto(s)
Fuerza Muscular/genética , Músculo Esquelético/fisiología , Atrofia Muscular/genética , Miostatina/genética , Actinas/genética , Animales , Extremidades/fisiología , Fémur/fisiología , Expresión Génica/genética , Guanidinoacetato N-Metiltransferasa/genética , Inmunoglobulina G/genética , Ratones , Ratones Endogámicos BALB C , Fuerza Muscular/fisiología , Atrofia Muscular/fisiopatología , Vuelo Espacial/métodos , Ingravidez
3.
Bone ; 86: 1-9, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26860048

RESUMEN

Chronic kidney disease (CKD) increases bone fracture risk. While the causes of bone fragility in CKD are not clear, the disrupted mineral homeostasis inherent to CKD may cause material quality changes to bone tissue. In this study, 11-week-old male C57Bl/6J mice underwent either 5/6th nephrectomy (5/6 Nx) or sham surgeries. Mice were fed a normal chow diet and euthanized 11weeks post-surgery. Moderate CKD with high bone turnover was established in the 5/6 Nx group as determined through serum chemistry and bone gene expression assays. We compared nanoindentation modulus and mineral volume fraction (assessed through quantitative backscattered scanning electron microscopy) at matched sites in arrays placed on the cortical bone of the tibia mid-diaphysis. Trabecular and cortical bone microarchitecture and whole bone strength were also evaluated. We found that moderate CKD minimally affected bone microarchitecture and did not influence whole bone strength. Meanwhile, bone material quality decreased with CKD; a pattern of altered tissue maturation was observed with 5/6 Nx whereby the newest 60µm of bone tissue adjacent to the periosteal surface had lower indentation modulus and mineral volume fraction than more interior, older bone. The variance of modulus and mineral volume fraction was also altered following 5/6 Nx, implying that tissue-scale heterogeneity may be negatively affected by CKD. The observed lower bone material quality may play a role in the decreased fracture resistance that is clinically associated with human CKD.


Asunto(s)
Huesos/patología , Insuficiencia Renal Crónica/patología , Animales , Fenómenos Biomecánicos , Densidad Ósea , Matriz Ósea/patología , Huesos/fisiopatología , Calcificación Fisiológica/genética , Hueso Esponjoso/diagnóstico por imagen , Hueso Esponjoso/patología , Hueso Esponjoso/fisiopatología , Hueso Cortical/diagnóstico por imagen , Hueso Cortical/patología , Fracturas del Cuello Femoral/diagnóstico por imagen , Fracturas del Cuello Femoral/patología , Fracturas del Cuello Femoral/fisiopatología , Fémur/diagnóstico por imagen , Fémur/patología , Fémur/fisiopatología , Pruebas de Función Renal , Masculino , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/diagnóstico por imagen , Insuficiencia Renal Crónica/fisiopatología , Tibia/patología , Tibia/fisiopatología
4.
IEEE Trans Biomed Eng ; 56(1): 45-53, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19224718

RESUMEN

Substantial advancement in the understanding of the neuronal basis of behavior and the treatment of neurological disorders has been achieved via the implantation of various devices into the brain. To design and optimize the next generation of neuronal implants while striving to minimize tissue damage, it is necessary to understand the mechanics of probe insertion at relevant length scales. Unfortunately, a broad-based understanding of brain-implant interactions at the necessary micrometer scales is largely missing. This paper presents a generalizable description of the micrometer-scale penetration mechanics and material properties of mouse brain tissue in vivo. Cylindrical stainless steel probes were inserted into the cerebral cortex and olfactory bulb of mice. The effects of probe size, probe geometry, insertion rate, insertion location, animal age, and the presence of the dura and pia on the resulting forces were measured continuously throughout probe insertion and removal. Material properties (modulus, cutting force, and frictional force) were extracted using mechanical analysis. The use of rigid, incompressible, cylindrical probes allows for a general understanding of how probe design and insertion methods influence the penetration mechanics of brain tissue in vivo that can be applied to the quantitative design of most future implantable devices.


Asunto(s)
Corteza Cerebral/fisiología , Bulbo Olfatorio/fisiología , Prótesis e Implantes , Algoritmos , Análisis de Varianza , Animales , Fenómenos Biomecánicos , Encéfalo/fisiología , Duramadre/fisiología , Módulo de Elasticidad , Ratones , Microscopía Electrónica de Rastreo , Piamadre/fisiología , Distribución de Poisson , Acero Inoxidable/química , Estrés Mecánico
5.
Adv Funct Mater ; 18(16): 2428-2435, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-19633727

RESUMEN

Shape-memory polymers are a class of smart materials that have recently been used in intelligent biomedical devices and industrial applications for their ability to change shape under a predetermined stimulus. In this study, photopolymerized thermoset shape-memory networks with tailored thermomechanics are evaluated to link polymer structure to recovery behavior. Methyl methacrylate (MMA) and poly(ethylene glycol) dimethacrylate (PEGDMA) are copolymerized to create networks with independently adjusted glass transition temperatures (T(g)) and rubbery modulus values ranging from 56 to 92 °C and 9.3 to 23.0 MPa, respectively. Free-strain recovery under isothermal and transient temperature conditions is highly influenced by the T(g) of the networks, while the rubbery moduli of the networks has a negligible effect on this response. The magnitude of stress generation of fixed-strain recovery correlates with network rubbery moduli, while fixed-strain recovery under isothermal conditions shows a complex evolution for varying T(g). The results are intended to help aid in future shape-memory device design and the MMA-co-PEGDMA network is presented as a possible high strength shape-memory biomaterial.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA