Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Cell Rep ; 43(2): 113798, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38381608

RESUMEN

Neurons establish specific synapses based on the adhesive properties of cell-surface proteins while also retaining the ability to form synapses in a relatively non-selective manner. However, comprehensive understanding of the underlying mechanism reconciling these opposing characteristics remains incomplete. Here, we have identified Side-IV/Beat-IIb, members of the Drosophila immunoglobulin superfamily, as a combination of cell-surface recognition molecules inducing synapse formation. The Side-IV/Beat-IIb combination transduces bifurcated signaling with Side-IV's co-receptor, Kirre, and a synaptic scaffold protein, Dsyd-1. Genetic experiments and subcellular protein localization analyses showed the Side-IV/Beat-IIb/Kirre/Dsyd-1 complex to have two essential functions. First, it narrows neuronal binding specificity through Side-IV/Beat-IIb extracellular interactions. Second, it recruits synapse formation factors, Kirre and Dsyd-1, to restrict synaptic loci and inhibit miswiring. This dual function explains how the combinations of cell-surface molecules enable the ranking of preferred interactions among neuronal pairs to achieve synaptic specificity in complex circuits in vivo.


Asunto(s)
Comunicación Celular , Inmunoglobulinas , Animales , Inmunoglobulinas/genética , Membrana Celular , Drosophila , Proteínas de la Membrana
2.
Genes Genet Syst ; 97(6): 297-309, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36878557

RESUMEN

Neural activity-dependent synaptic plasticity is an important physiological phenomenon underlying environmental adaptation, memory and learning. However, its molecular basis, especially in presynaptic neurons, is not well understood. Previous studies have shown that the number of presynaptic active zones in the Drosophila melanogaster photoreceptor R8 is reversibly changed in an activity-dependent manner. During reversible synaptic changes, both synaptic disassembly and assembly processes were observed. Although we have established a paradigm for screening molecules involved in synaptic stability and several genes have been identified, genes involved in stimulus-dependent synaptic assembly are still elusive. Therefore, the aim of this study was to identify genes regulating stimulus-dependent synaptic assembly in Drosophila using an automated synapse quantification system. To this end, we performed RNAi screening against 300 memory-defective, synapse-related or transmembrane molecules in photoreceptor R8 neurons. Candidate genes were narrowed down to 27 genes in the first screen using presynaptic protein aggregation as a sign of synaptic disassembly. In the second screen, we directly quantified the decreasing synapse number using a GFP-tagged presynaptic protein marker. We utilized custom-made image analysis software, which automatically locates synapses and counts their number along individual R8 axons, and identified cirl as a candidate gene responsible for synaptic assembly. Finally, we present a new model of stimulus-dependent synaptic assembly through the interaction of cirl and its possible ligand, ten-a. This study demonstrates the feasibility of using the automated synapse quantification system to explore activity-dependent synaptic plasticity in Drosophila R8 photoreceptors in order to identify molecules involved in stimulus-dependent synaptic assembly.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/genética , Drosophila melanogaster/genética , Sinapsis/metabolismo , Axones/metabolismo , Neuronas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Receptores de Péptidos/metabolismo
3.
Hum Mol Genet ; 32(9): 1524-1538, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36611008

RESUMEN

Drosophila is an excellent model organism for studying human neurodegenerative diseases (NDs). However, there is still almost no experimental system that could directly observe the degeneration of neurons and automatically quantify axonal degeneration. In this study, we created MeDUsA (a 'method for the quantification of degeneration using fly axons'), a standalone executable computer program based on Python that combines a pre-trained deep-learning masking tool with an axon terminal counting tool. This software automatically quantifies the number of retinal R7 axons in Drosophila from a confocal z-stack image series. Using this software, we were able to directly demonstrate that axons were degenerated by the representative causative genes of NDs for the first time in Drosophila. The fly retinal axon is an excellent experimental system that is capable of mimicking the pathology of axonal degeneration in human NDs. MeDUsA rapidly and accurately quantifies axons in Drosophila photoreceptor neurons. It enables large-scale research into axonal degeneration, including screening to identify genes or drugs that mediate axonal toxicity caused by ND proteins and diagnose the pathological significance of novel variants of human genes in axons.


Asunto(s)
Proteínas de Drosophila , Enfermedades Neurodegenerativas , Animales , Humanos , Drosophila/genética , Drosophila/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Axones/metabolismo , Neuronas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo
4.
Genes Genet Syst ; 95(3): 101-110, 2020 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-32493879

RESUMEN

In many animals, neural activity contributes to the adaptive refinement of synaptic properties, such as firing frequency and the number of synapses, for learning, memorizing and adapting for survival. However, the molecular mechanisms underlying such activity-dependent synaptic remodeling remain largely unknown. In the synapses of Drosophila melanogaster, the presynaptic active zone (AZ) forms a T-shaped presynaptic density comprising AZ proteins, including Bruchpilot (Brp). In a previous study, we found that the signal from a fusion protein molecular marker consisting of Brp and mCherry becomes diffuse under continuous light over three days (LL), reflecting disassembly of the AZ, while remaining punctate under continuous darkness. To identify the molecular players controlling this synaptic remodeling, we used the fusion protein molecular marker and performed RNAi screening against 208 neuron-related transmembrane genes that are highly expressed in the Drosophila visual system. Second analyses using the STaR (synaptic tagging with recombination) technique, which showed a decrease in synapse number under the LL condition, and subsequent mutant and overexpression analysis confirmed that five genes are involved in the activity-dependent AZ disassembly. This work demonstrates the feasibility of identifying genes involved in activity-dependent synaptic remodeling in Drosophila, and also provides unexpected insight into the molecular mechanisms involved in cholesterol metabolism and biosynthesis of the insect molting hormone ecdysone.


Asunto(s)
Clonación Molecular/métodos , Proteínas de Drosophila/genética , Sinapsis/metabolismo , Vías Visuales/metabolismo , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Neuronas/metabolismo , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sinapsis/fisiología , Vías Visuales/citología , Proteína Fluorescente Roja
5.
Genes Cells ; 24(7): 496-510, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31124270

RESUMEN

In the Drosophila brain, neurons form genetically specified synaptic connections with defined neuronal targets. It is proposed that each central nervous system neuron expresses specific cell surface proteins, which act as identification tags. Through an RNAi screen of cell surface molecules in the Drosophila visual system, we found that the cell adhesion molecule Klingon (Klg) plays an important role in repressing the ectopic formation of extended axons, preventing the formation of excessive synapses. Cell-specific manipulation of klg showed that Klg is required in both photoreceptors and the glia, suggesting that the balanced homophilic interaction between photoreceptor axons and the glia is required for normal synapse formation. Previous studies suggested that Klg binds to cDIP and our genetic analyses indicate that cDIP is required in glia for ectopic synaptic repression. These data suggest that Klg play a critical role together with cDIP in refining synaptic specificity and preventing unnecessary connections in the brain.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiología , Proteínas del Ojo/metabolismo , Neuroglía/fisiología , Células Fotorreceptoras de Invertebrados/fisiología , Sinapsis/fisiología , Vías Visuales , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/fisiología , Axones/fisiología , Moléculas de Adhesión Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas del Ojo/genética , Femenino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA