Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Rep ; 14(1): 8025, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580807

RESUMEN

The modification of the surgical polypropylene mesh and the polytetrafluoroethylene vascular prosthesis with cecropin A (small peptide) and puromycin (aminonucleoside) yielded very stable preparations of modified biomaterials. The main emphasis was placed on analyses of their antimicrobial activity and potential immunomodulatory and non-cytotoxic properties towards the CCD841 CoTr model cell line. Cecropin A did not significantly affect the viability or proliferation of the CCD 841 CoTr cells, regardless of its soluble or immobilized form. In contrast, puromycin did not induce a significant decrease in the cell viability or proliferation in the immobilized form but significantly decreased cell viability and proliferation when administered in the soluble form. The covalent immobilization of these two molecules on the surface of biomaterials resulted in stable preparations that were able to inhibit the multiplication of Staphylococcus aureus and S. epidermidis strains. It was also found that the preparations induced the production of cytokines involved in antibacterial protection mechanisms and stimulated the immune response. The key regulator of this activity may be related to TLR4, a receptor recognizing bacterial LPS. In the present study, these factors were produced not only in the conditions of LPS stimulation but also in the absence of LPS, which indicates that cecropin A- and puromycin-modified biomaterials may upregulate pathways leading to humoral antibacterial immune response.


Asunto(s)
Antiinfecciosos , Materiales Biocompatibles , Materiales Biocompatibles/farmacología , Lipopolisacáridos , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Polímeros/farmacología , Staphylococcus epidermidis , Puromicina
2.
Molecules ; 28(16)2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37630373

RESUMEN

Fungi are a unique natural resource rich in polysaccharides, proteins, and other components. Polysaccharides are considered one of the most important bioactive components in fungi. Increasing numbers of studies have confirmed that fungal polysaccharides have various biological activities. Given these facts, the main aim of this investigation was to carry out isolation, identification, and structural characterisation of a new polysaccharide (EPS) derived from laboratory-cultured vegetative mycelium of a new Spongipellis borealis strain isolated from the environment. The examination of monosaccharides in the EPS demonstrated that the isolated biopolymer was composed mainly of glucose, galactose, and mannose monomers. The analysis of the methylation of the studied polymer indicated that it contained mainly terminal, →3)-linked, →4)-linked, and →2,4)-linked hexoses. The effect of fungal polysaccharides on S. borealis proteolytic enzymes (pepsin, trypsin, and pycnoporopepsin) and laccase activity was determined for the first time. Incubation of the enzyme preparation and EPS showed an influence of EPS on the stability of these enzymes, compared to the control values (without EPS).


Asunto(s)
Polisacáridos Fúngicos , Polyporales , Polisacáridos Fúngicos/farmacología , Madera , Biotecnología , Hongos , Péptido Hidrolasas
3.
J Funct Biomater ; 14(7)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37504878

RESUMEN

Lactobionic acid (LBA) is a bioactive compound that has become increasingly popular in medicine in recent years due to its unique properties. This chemical can be formed via the enzymatic oxidation of lactose using fungal oxidoreductive enzymes. This study aimed to intensify the synthesis of LBA using immobilised enzymes (cellobiose dehydrogenase from Phanerochaete chrysosporium (PchCDH) and laccase from Cerrena unicolor (CuLAC)) on chitosan microspheres. We used three different crosslinking agents: genipin, glutaraldehyde, and polyethyleneimine to activate the chitosan. The FTIR and CellDrop techniques were used to characterise the activated microspheres. Quantitative (HPLC) and qualitative (TLC) methods were used to determine the obtained LBA. The results show that the type of activator used influences the efficiency of the binding of the enzyme to the matrix. Furthermore, the amount of LBA formed depends on the type of system used. The use of a system in which one of the enzymes is immobilised on a PEI-activated carrier (PchCDH) and the other is free (CuLAC) proved to be the most optimal, as it yielded almost 100% conversion of lactose to lactobionic acid. Summarising the data obtained the following: lactobionic acid immobilised on chitosan microspheres has great potential for medical applications.

4.
Metabolites ; 13(4)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37110128

RESUMEN

Enzymes produced by white rot fungi are involved in the synthesis of secondary metabolites with valuable biotechnological properties. One of these metabolites is lactobionic acid (LBA). The aim of this study was to characterize a novel enzyme system consisting of a cellobiose dehydrogenase from Phlebia lindtneri (PlCDH), a laccase from Cerrena unicolor (CuLAC), a redox mediator (ABTS or DCPIP), and lactose as a substrate. We used quantitative (HPLC) and qualitative methods (TLC, FTIR) to characterise the obtained LBA. The free radical scavenging effect of the synthesised LBA was assessed with the DPPH method. Bactericidal properties were tested against Gram-negative and Gram-positive bacteria. We obtained LBA in all the systems tested; however, the study showed that the temperature of 50 °C with the addition of ABTS was the most advantageous condition for the synthesis of lactobionic acid. A mixture with 13 mM LBA synthesised at 50 °C with DCPIP showed the best antioxidant properties (40% higher compared with the commercial reagent). Furthermore, LBA had an inhibitory effect on all the bacteria tested, but the effect was better against Gram-negative bacteria with growth inhibition no lower than 70%. Summarizing the obtained data, lactobionic acid derived in a multienzymatic system is a compound with great biotechnological potential.

5.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901965

RESUMEN

Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoprotein catalyzing the oxidation reaction of ß-1,4-glycosidic-bonded sugars (lactose or cellobiose), which results in the formation of aldobionic acids and hydrogen peroxide as a byproduct. The biotechnological application of CDH requires the immobilization of the enzyme on a suitable support. As a carrier of natural origin used for CDH immobilization, chitosan seems to increase the catalytic potential of the enzyme, especially for applications as packaging in the food industry and as a dressing material in medical applications. The present study aimed to immobilize the enzyme on chitosan beads and determine the physicochemical and biological properties of immobilized CDHs obtained from different fungal sources. The chitosan beads with immobilized CDHs were characterized in terms of their FTIR spectra or SEM microstructure. The most effective method of immobilization in the proposed modification was the covalent bonding of enzyme molecules using glutaraldehyde, resulting in efficiencies ranging from 28 to 99%. Very promising results, compared to free CDH, were obtained in the case of antioxidant, antimicrobial, and cytotoxic properties. Summarizing the obtained data, chitosan seems to be a valuable material for the development of innovative and effective immobilization systems for biomedical applications or food packaging, preserving the unique properties of CDH.


Asunto(s)
Antiinfecciosos , Quitosano , Quitosano/química , Oxidación-Reducción , Peróxido de Hidrógeno , Oxidorreductasas , Enzimas Inmovilizadas/química , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno
6.
Arch Microbiol ; 203(7): 4433-4448, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34132850

RESUMEN

Polysaccharides are biopolymers composed of simple sugars like glucose, galactose, mannose, fructose, etc. The major natural sources for the production of polysaccharides include plants and microorganisms. In the present work, four bacterial and two fungal polysaccharides (PS or EPS) were used for the modification and preservation of Pycnoporus sanguineus cellobiose dehydrogenase (CDH) activity. It was found that the presence of polysaccharide preparations clearly enhanced the stability of cellobiose dehydrogenase compared to the control value (4 °C). The highest stabilization effect was observed for CDH modified with Rh110EPS. Changes in the optimum pH in the samples of CDH incubated with the chosen polysaccharide modifiers were evidenced as well. The most significant effect was observed for Rh24EPS and Cu139PS (pH 3.5). Cyclic voltammetry used for the analysis of electrochemical parameters of modified CDH showed the highest peak values after 30 days of incubation with polysaccharides at 4 °C. In summary, natural polysaccharides seem to be an effective biotechnological tool for the modification of CDH activity to increase the possibilities of its practical applications in many fields of industry.


Asunto(s)
Deshidrogenasas de Carbohidratos , Polyporaceae , Polisacáridos , Bacterias/química , Deshidrogenasas de Carbohidratos/metabolismo , Catálisis/efectos de los fármacos , Estabilidad de Enzimas , Hongos/química , Polyporaceae/enzimología , Polisacáridos/metabolismo , Polisacáridos/farmacología
7.
Int J Mol Sci ; 21(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192097

RESUMEN

Novel sustainable processes involving oxidative enzymatic catalysts are considered as an alternative for classical organic chemistry. The unique physicochemical and bioactive properties of novel bio-products can be obtained using fungal laccase as catalyst. Among them are textile biodyes synthesised during oxidation of substrates belonging to the amine and methoxy organic derivatives. The process of synthesis occurs in mild conditions of pH, temperature, and pressure, and without using harmful oxidants. The effect of fungal laccase activity on the substrates mixture transformation efficiency was analysed in terms of antimicrobial dye synthesis on a large scale. Three new phenazine dyes, obtained in the presence of laccase from Cerrena unicolor, were studied for their structure and properties. The phenazine core structure of the products was a result of tri-molecular transformation of aminomethoxybenzoic acid and aminonaphthalene sulfonic acid isomers. One of the compounds from the synthesised dye, namely 10-((2-carboxy-6-methoxyphenyl)amino)-11-methoxybenzo[a]phenazine-8-carboxylic acid, was able to inhibit the growth of Staphylococcus aureus. The high concentration of substrates (5 g/L) was efficiently transformed during 72 h in the mild conditions of pH 4 with the use of laccase with an activity of 200 U per g of the substrates mixture. The new bioactive dye exhibited excellent dyeing properties with concomitant antibacterial and antioxidative activity. The proposed enzyme-mediated synthesis represents an alternative eco-friendly route for the synthesis of novel antimicrobial compounds with high importance for the medical textile industry.


Asunto(s)
Colorantes/química , Colorantes/farmacología , Hongos/enzimología , Lacasa/metabolismo , Textiles , Antioxidantes/química , Antioxidantes/farmacología , Biotransformación , Cromatografía Líquida de Alta Presión , Electroquímica , Concentración de Iones de Hidrógeno , Cinética , Estructura Molecular , Oxidación-Reducción , Relación Estructura-Actividad
8.
Molecules ; 25(3)2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32019268

RESUMEN

Exopolymeric substances (EPS) can determine plant-microorganism interactions and have great potential as bioactive compounds. The different amounts of EPS obtained from cultures of three endophytic Fusarium culmorum strains with different aggressiveness-growth promoting (PGPF), deleterious (DRMO), and pathogenic towards cereal plants-depended on growth conditions. The EPS concentrations (under optimized culture conditions) were the lowest (0.2 g/L) in the PGPF, about three times higher in the DRMO, and five times higher in the pathogen culture. The EPS of these strains differed in the content of proteins, phenolic components, total sugars, glycosidic linkages, and sugar composition (glucose, mannose, galactose, and smaller quantities of arabinose, galactosamine, and glucosamine). The pathogen EPS exhibited the highest total sugar and mannose concentration. FTIR analysis confirmed the ß configuration of the sugars. The EPS differed in the number and weight of polysaccharidic subfractions. The EPS of PGPF and DRMO had two subfractions and the pathogen EPS exhibited a subfraction with the lowest weight (5 kDa). The three EPS preparations (ethanol-precipitated EP, crude C, and proteolysed P) had antioxidant activity (particularly high for the EP-EPS soluble in high concentrations). The EP-EPS of the PGPF strain had the highest antioxidant activity, most likely associated with the highest content of phenolic compounds in this EPS.


Asunto(s)
Antioxidantes/química , Antioxidantes/farmacología , Grano Comestible/efectos de los fármacos , Matriz Extracelular de Sustancias Poliméricas/química , Matriz Extracelular de Sustancias Poliméricas/metabolismo , Fusarium/fisiología , Antioxidantes/aislamiento & purificación , Grano Comestible/microbiología , Interacciones Huésped-Patógeno
9.
Biomolecules ; 10(1)2020 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-31947983

RESUMEN

Three serine protease inhibitors (AEBSF, soy inhibitor, α1-antitrypsin) were covalently immobilized on the surface of three polymer prostheses with the optimized method. The immobilization efficiency ranged from 11 to 51%, depending on the chosen inhibitor and biomaterial. The highest activity for all inhibitors was observed in the case of immobilization on the surface of the polyester Uni-Graft prosthesis, and the preparations obtained showed high stability in the environment with different pH and temperature values. Modification of the Uni-Graft prosthesis surface with the synthetic AEBSF inhibitor and human α1-antitrypsin inhibited the adhesion and multiplication of Staphylococcus aureus subs. aureus ATCC® 25923TM and Candida albicans from the collection of the Department of Genetics and Microbiology, UMCS. Optical profilometry analysis indicated that, after the immobilization process on the surface of AEBSF-modified Uni-Graft prostheses, there were more structures with a high number of protrusions, while the introduction of modifications with a protein inhibitor led to the smoothing of their surface.


Asunto(s)
Inhibidores de Serina Proteinasa/química , Inhibidores de Serina Proteinasa/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Antibacterianos/farmacología , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Candida albicans/efectos de los fármacos , Endopeptidasas , Humanos , Polímeros , Staphylococcus aureus/efectos de los fármacos , Sulfonas/química , Sulfonas/farmacología , alfa 1-Antitripsina/química , alfa 1-Antitripsina/farmacología
10.
Fungal Biol ; 123(12): 875-886, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31733730

RESUMEN

Cellobiose dehydrogenase (CDH, EC 1.1.99.18) is a glycoprotein having many biotechnological applications. In the present study, CDHs isolated from Phlebia lindtneri (PlCDH), Phanerochaete chrysosporium (PchCDH), Cerrena unicolor (CuCDH), and Pycnoporus sanguineus (PsCDH) were studied the first time for their ability to generate antioxidant and antimicrobial agents. The aim of the research was to evaluate the antioxidant and antimicrobial activity of systems composed of four CDHs and lactose or cellobiose as a reaction substrate. The free radical scavenging effect of free and immobilised enzymes was evaluated using the DPPH method. The lowest values of EC50 (10.04 ± 0.75 µg/ml) was noted for PlCDH/lactose and for PlCDH/cellobiose (12.06 ± 1.35 µg/ml). The EC50value reached 12.6 ± 1.51 µg/ml in the case of PsCDH/lactose and 15.96 ± 1.35 for PsCDH. The CDH preparations were also effectively immobilised in alginate (the immobilisation efficiency expressed as a protein yield ranged from 61.6 to 100 %). The operational stability expressed as a scavenging effect showed the possibility of using the alginate beads 4 times. Both the free and immobilised CDHs as well as the CDH/substrate were tested against Gram-negative Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853, and Gram-positive Staphylococcus aureus ATCC 25923 bacteria. All samples, except PlCDH, were potentially effective in suppression of bacterial growth. The highest percentage of inhibition (100 %) was obtained for S. aureus bacteria using PsCDH and PchCDH with lactose as a substrate, whereas a slightly lesser effect was observed for E. coli and P. aeruginosa bacterial cells, i.e. 64.1 % and 86.5 % (PsCDH) and 94.1 % and 41.4 % (PchCDH), respectively. Furthermore, the concentrations of the reaction products (aldonic acids and hydrogen peroxide) were quantified and the surface morphology of the alginate beads was analysed using SEM visualisation.


Asunto(s)
Antiinfecciosos/aislamiento & purificación , Antiinfecciosos/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Basidiomycota/enzimología , Deshidrogenasas de Carbohidratos/aislamiento & purificación , Deshidrogenasas de Carbohidratos/farmacología , Basidiomycota/aislamiento & purificación , Compuestos de Bifenilo/metabolismo , Deshidrogenasas de Carbohidratos/metabolismo , Celobiosa/metabolismo , Enzimas Inmovilizadas/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Lactosa/metabolismo , Pruebas de Sensibilidad Microbiana , Picratos/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Madera/microbiología
11.
Int J Biol Macromol ; 118(Pt A): 957-964, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29964116

RESUMEN

The extracellular crude Rhizomucor variabilis lipase was used for synthesis of flavor ester butyl caprylate and 1-butyl oleate often used as a diesel additive, a polyvinyl chloride plasticizer, a water-resisting agent, and an additive to hydraulic fluids. The influence of various reaction parameters such as the molar ratio, time, enzyme and substrate concentration, and effect of various fungal polysaccharides was estimated. The rate of catalyzed synthesis of esters largely depends on the solvent medium, and the maximum activity was found when n-hexane was used as a solvent. The maximum conversion yield of 58.2% and 59.3% was obtained for butyl caprylate and butyl oleate, respectively, under the following conditions: amount of free lipase 500 U; caprylic acid:butanol molar ratio 1:1; oleic acid:butanol molar ratio 2:1. The addition of naturally obtained fungal polysaccharides significantly enhanced the ester synthesis. The highest conversion rate of 95.2% was observed for butyl caprylate in the presence of AbEPS after 24 h with 500 U of free R. variabilis lipase. In the case of butyl oleate synthesis in the presence of LsPS, a maximum conversion yield of 91.2% was observed after the 24-h reaction.


Asunto(s)
Caproatos/síntesis química , Polisacáridos Fúngicos/química , Proteínas Fúngicas/química , Lipasa/química , Ácidos Oléicos/síntesis química , Rhizomucor/enzimología , Agua/química , Adsorción , Caproatos/química , Ácidos Oléicos/química
12.
Bioprocess Biosyst Eng ; 41(7): 973-989, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29582151

RESUMEN

Four bacterial EPSs extracted from Rhizobium leguminosarum bv. trifolii Rt24.2, Sinorhizobium meliloti Rm1021, Bradyrhizobium japonicum USDA110, and Bradyrhizobium elkanii USDA76 were determined towards their metal ion adsorption properties and possible modification of Cerrena unicolor laccase properties. The highest magnesium and iron ion-sorption capacity (~ 42 and ~ 14.5%, respectively) was observed for EPS isolated from B. japonicum USDA110. An evident influence of EPSs on the stability of laccase compared to the control values (without EPSs) was shown after 30-day incubation at 25 °C. The residual activity of laccases was obtained in the presence of Rh76EPS and Rh1021EPS, i.e., 49.5 and 41.5% of the initial catalytic activity, respectively. This result was confirmed by native PAGE electrophoresis. The EPS effect on laccase stability at different pH (from 3.8 to 7.0) was also estimated. The most significant changes at the optimum pH value (pH 5.8) was observed in samples of laccase stabilized by Rh76EPS and Rh1021EPS. Cyclic voltamperometry was used for analysis of electrochemical parameters of laccase stabilized by bacterial EPS and immobilized on single-walled carbon nanotubes (SWCNTs) with aryl residues. Laccases with Rh76EPS and Rh1021EPS had an evident shift of the value of the redox potential compared to the control without EPS addition. In conclusion, the results obtained in this work present a new potential use of bacterial EPSs as a metal-binding component and a modulator of laccase properties especially stability of enzyme activity, which can be a very effective tool in biotechnology and industrial applications.


Asunto(s)
Bacterias/química , Basidiomycota/enzimología , Enzimas Inmovilizadas/química , Proteínas Fúngicas/química , Lacasa/química , Metales/química , Polisacáridos Bacterianos/química , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno
13.
Postepy Biochem ; 63(4): 261-268, 2017.
Artículo en Polaco | MEDLINE | ID: mdl-29374427

RESUMEN

From the earliest times, medicine has focused on finding the most suitable and effective treatment for every patient. At present, a dynamic development of diagnostic methods and techniques for designing new drugs allows to create therapies for many diseases at the molecular level. Among the many drugs appearing on the medical market every year, special attention should be paid to those whose action is based on the inhibition of proteolytic enzyme activity. Protease inhibitors are a diverse group of biologically active molecules for which antiviral, antimicrobial, antifungal, antiparasitic or anticancer effects have been documented. Successes in the treatment of HIV infection, hepatitis C and influenza diseases certainly encourage researchers to look for new inhibitors that could be used in new therapies. This paper provides an overview of selected information on enzyme inhibitors, especially protease inhibitors, which are already registered medicines and substances that are promising candidates for medical use.


Asunto(s)
Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/enzimología , Hepatitis C/tratamiento farmacológico , Hepatitis C/enzimología , Humanos , Gripe Humana/tratamiento farmacológico , Gripe Humana/enzimología
14.
Int J Biol Macromol ; 92: 138-147, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27392777

RESUMEN

The soil native bacterial strains were screened for laccase activity. Bacterial strain L3.8 with high laccase activity was identified as Sinorhizobium meliloti. The crude intracellular L3.8 enzyme extract was able to oxidize typical diagnostic substrates of plant and fungal laccases. Laccase L3.8 was purified 81-fold with a yield of 19.5%. The molecular mass of the purified bacterial laccase was found to be 70.0kDa and its pI was 4.77. UV-vis spectrum showed that L3.8 protein is a multicopper oxidase. The carbohydrate content of the purified enzyme was estimated at 3.2%. Moreover, the laccase active fraction was characterized in terms of kinetics, temperature, and pH optima as well as the effect of various chemical compounds on the laccase activity, and antioxidant properties, which indicated that the L3.8 laccase had unique properties that might be important in biotechnological applications. The lacc gene encoding S. meliloti laccase was cloned and characterized. The full-length sequence of 1950bp encoded a protein of 649 aa preceded by a signal peptide consisting of 26aa. Laccase L3.8 shared significant structural features characteristic of other laccases, including the conserved regions of four histidine-rich copper-binding sites. Potential biotechnological importance of a newly identified laccase is discussed.


Asunto(s)
Proteínas Bacterianas , Clonación Molecular , Lacasa , Sinorhizobium meliloti , Secuencia de Aminoácidos , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Secuencia de Bases , Sitios de Unión , Lacasa/biosíntesis , Lacasa/química , Lacasa/genética , Lacasa/aislamiento & purificación , Sinorhizobium meliloti/enzimología , Sinorhizobium meliloti/genética
15.
Ann Agric Environ Med ; 23(2): 280-4, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-27294633

RESUMEN

UNLABELLED: IIntroduction and objective. In recent years there has been intensified research on medicinal preparations of fungal origin. Some fungal polysaccharides may directly affect the inhibition of cancer cells proliferation which, stopping the cell cycle, leads to apoptosis. One of these substances (component of extract of Ganoderma spp) is extensively tested for its anti-cancer properties on the tumor cell lines. Electric cell-substrate impedance sensing (ECIS) is an in vitro impedance measuring system using alternating current (AC) to determinate the behaviour of the cells in physiological conditions. OBJECTIVE: The aim of the study was to examine the electric properties (resistance, capacitance and impedance) of mouse fibroblasts cell line L929 after treatment by different concentration of crude exopolysaccharides from Ganoderma applanatum (GpEPS) in real time by ECIS technique. MATERIALS AND METHODS: For the study, the L929 cell line culture was treated by different concentrations of GpEPS: C1=228.5 µg/mL; C2=22.85 µg/mL; C3=2.285 µg/mL; C4=0.2285 µg/mL; and C5=0.02285 µg/mL. Default optimal frequencies were used: Resistance (R) 4000Hz, Impedance (Z) 16000Hz, Capacitance (C) 64000Hz. RESULTS: The study demonstrated that GpEPS had no significant effect on the resistance, capacitance and impedance cells cultures, which implies that there is no significant effect on the physiological processes of L929 fibroblasts. This indicates the possibility of using GpEPS preparation in anti-cancer therapy. CONCLUSIONS: In the future, following further studies (comprising in preventive and therapeutic actions), GpEPS can be safely used in anti-cancer therapy which does not cause side-effects or damage to healthy cells.


Asunto(s)
Impedancia Eléctrica , Polisacáridos Fúngicos/química , Ganoderma/química , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Ratones
16.
Oncol Lett ; 11(3): 2009-2018, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26998114

RESUMEN

Chronic lymphocytic leukemia (CLL) is the most commonly observed adult hematological malignancy in Western countries. Despite the fact that recent improvements in CLL treatment have led to an increased percentage of complete remissions, CLL remains an incurable disease. Cerrena unicolor is a novel fungal source of highly active extracellular laccase (ex-LAC) that is currently used in industry. However, to the best of our knowledge, no reports regarding its anti-leukemic activity have been published thus far. In the present study, it was hypothesized that C. unicolor ex-LAC may possess cytotoxic activity against leukemic cell lines and CLL primary cells. C. unicolor ex-LAC was separated using anion exchange chromatography on diethylaminoethyl cellulose-Sepharose and Sephadex G-50 columns. The cytotoxic effects of ex-LAC upon 24- and 48-h treatment on HL-60, Jurkat, RPMI 8226 and K562 cell lines, as well as CLL primary cells of nine patients with CLL, were evaluated using 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay. Annexin V/propidium iodide staining of Jurkat cells treated with ex-LAC was used to investigate apoptosis via flow cytometry. Ex-LAC induced changes in Jurkat and RPMI 8226 cells, as visualized by fluorescence and scanning electron microscopy (SEM). The XTT assay revealed high cytotoxic rates following treatment with various concentrations of ex-LAC on all the cell lines and CLL primary cells analyzed, with a half maximal inhibitory concentration ranging from 0.4 to 1.1 µg/ml. Fluorescence microscopy and SEM observations additionally revealed apoptotic changes in Jurkat and RPMI 8226 cells treated with ex-LAC, compared with control cells. These results were in agreement with the apoptosis analysis of Jurkat cells on flow cytometry. In conclusion, C. unicolor ex-LAC was able to significantly induce cell apoptosis, and may represent a novel therapeutic agent for the treatment of various hematological neoplasms.

17.
Acta Biochim Pol ; 63(2): 223-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26885775

RESUMEN

Three species of white rot fungi: Cerrena unicolor, Phlebia lindtneri and Pycnoporus sanguineus were cultured in two different media under five different lighting conditions: dark, white, red, blue, and green light. Laccase, cellobiose dehydrogenase, and protease activities were examined in the samples. Blue light efficiently boosted laccase synthesis in C. unicolor and P. sanguineus, whereas the highest activities (20 654 nkat/l) of P. lindtneri laccase were observed when this fungus was maintained in green light. On the contrary, the green light allowed obtaining the highest activities of cellobiose dehydrogenase of C. unicolor and P. lindtneri, while CDH of P. sanguineus seems to be dependent on white light. It is clearly visible that differences in protease activities are noticeable not only between the lights variants but also among the media used. However, high proteases activities are correlated with light variants inducing laccase in Lindeberg and Holm medium. Contrary to the cellulose-based medium, where they are weak in light variants that lead to high CDH activities.


Asunto(s)
Deshidrogenasas de Carbohidratos/biosíntesis , Proteínas Fúngicas/biosíntesis , Lacasa/biosíntesis , Péptido Hidrolasas/biosíntesis , Pycnoporus/enzimología , Adaptación Fisiológica , Inducción Enzimática/efectos de la radiación , Regulación Fúngica de la Expresión Génica/efectos de la radiación , Luz , Pycnoporus/efectos de la radiación
18.
Nanomedicine ; 12(4): 1095-1103, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26772425

RESUMEN

High antifungal activity is reported, in comparison with commercially available products, of a novel hybrid system based on silver nanoparticles synthesized using a popular antifungal macrocyclic polyene amphotericin B (AmB) acting both as a reducing and stabilizing/capping agent. The synthesis reaction proceeds in an alkaline environment which prevents aggregation of AmB itself and promotes nanoparticle formation. The innovative approach produces monodisperse (PDI=0.05), AmB-coated silver nanoparticles (AmB-AgNPs) with the diameter ~7nm. The products were characterized using imaging (electron microscopy) and spectroscopic (UV-vis and infrared absorption, dynamic light scattering and Raman scattering) methods. The nanoparticles were tested against Candida albicans, Aspergillus niger and Fusarium culmorum species. For cytotoxicity studies CCD-841CoTr and THP-1 cell lines were used. Particularly high antifungal activity of AmB-AgNPs is interpreted as the result of synergy between the antifungal activity of amphotericin B and silver antimicrobial properties (Ag(+) ions release). FROM THE CLINICAL EDITOR: Amphotericin B (AmB) is a common agent used for the treatment against severe fungal infections. In this article, the authors described a new approach in using a combination of AmB and silver nanoparticles, in which the silver nanoparticles were synthesized and stabilized by AmB. Experimental data confirmed synergistic antifungal effects between amphotericin B and silver. This novel synthesis process could potentially be important in future drug development and fabrication.


Asunto(s)
Anfotericina B/farmacología , Antifúngicos/farmacología , Micosis/tratamiento farmacológico , Nanopartículas/administración & dosificación , Anfotericina B/síntesis química , Anfotericina B/química , Antifúngicos/síntesis química , Antifúngicos/química , Aspergillus niger/efectos de los fármacos , Aspergillus niger/patogenicidad , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad , Sistemas de Liberación de Medicamentos , Fusarium/efectos de los fármacos , Fusarium/patogenicidad , Humanos , Micosis/microbiología , Nanopartículas/química , Plata/química , Plata/farmacología
19.
Biotechnol Appl Biochem ; 63(1): 67-76, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25643732

RESUMEN

A new strain of Rhizomucor variabilis producing an active extracellular lipase was identified and characterized in the present studies. The culture conditions were optimized and the highest lipase production amounting to 136 U/mL was achieved after 4 days of cultivation. The optimum pH (5.5) and temperature (28 °C) were determined as the best conditions for R. variabilis lipase production. The isolated enzyme preparation exhibited maximum activity at 40 °C and pH 8.0. Lipase from R. variabilis was stable up to 50 °C during 2 H retaining 80% of its initial activity. The enzyme was highly stable in the pH range of 7.0-9.0. Moreover, the addition of naturally obtained exopolysaccharides (EPS) significantly enhanced lipase activity. The presence of EPS derived from Ganoderma applanatum and Rhizobium leguminosarum enhanced the lipase activity, which was 22% and 31%, respectively, higher than that in the control experiments. Simultaneously, the pH activity profiles remained unchanged. The Michaelis-Menten constant and the turnover number of the enzyme for p-nitrophenyl palmitate in the standard assay conditions were estimated at a level of 0.631 mM and 0.674 Sec(-1) . In conclusion, the results obtained in this work present a newly isolated lipase preparation stabilized with EPS or without modification as a very effective tool for industrial application.


Asunto(s)
Lipasa/metabolismo , Rhizomucor/enzimología , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Lipasa/química , Lipasa/aislamiento & purificación , Polisacáridos/metabolismo , Rhizomucor/química , Temperatura
20.
Polymers (Basel) ; 9(1)2016 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30970686

RESUMEN

The main objective of this study was to determine the effect of biochemical modification of epoxy adhesive compounds on the mechanical properties of a cured adhesive exposed to various climatic factors. The epoxy adhesive was modified by lyophilized fungal metabolites and prepared by three methods. Additionally, the adhesive compound specimens were seasoned for two months at a temperature of 50 °C and 50% humidity in a climate test chamber, Espec SH 661. The tensile strength tests of the adhesive compounds were performed using a Zwick/Roell Z150 testing machine in compliance with the DIN EN ISO 527-1 standard. The examination of the adhesive specimens was performed using two microscopes: a LEO 912AB transmission electron microscope equipped with Quantax 200 for EDS X-ray spectroscopy and a Zeiss 510 META confocal microscope coupled to an AxioVert 200M. The experiments involved the use of a CT Skyscan 1172 tomograph. The results revealed that some mechanical properties of the modified adhesives were significantly affected by both the method of preparation of the adhesive compound and the content of the modifying agent. In addition, it was found that seasoning of the modified adhesives does not lead to a decrease in some of their mechanical properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA