Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Cell Rep ; 43(8): 114527, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39046873

RESUMEN

The paracrine actions of adipokine plasminogen activator inhibitor-1 (PAI-1) are implicated in obesity-associated tumorigenesis. Here, we show that PAI-1 mediates extracellular matrix (ECM) signaling via epigenetic repression of DKK1 in endometrial epithelial cells (EECs). While the loss of DKK1 is known to increase ß-catenin accumulation for WNT signaling activation, this epigenetic repression causes ß-catenin release from transmembrane integrins. Furthermore, PAI-1 elicits the disengagement of TIMP2 and SPARC from integrin-ß1 on the cell surface, lifting an integrin-ß1-ECM signaling constraint. The heightened interaction of integrin-ß1 with type 1 collagen (COL1) remodels extracellular fibrillar structures in the ECM. Consequently, the enhanced nanomechanical stiffness of this microenvironment is conducive to EEC motility and neoplastic transformation. The formation of extensively branched COL1 fibrils is also observed in endometrial tumors of patients with obesity. The findings highlight PAI-1 as a contributor to enhanced integrin-COL1 engagement and extensive ECM remodeling during obesity-associated neoplastic development.


Asunto(s)
Matriz Extracelular , Integrina beta1 , Obesidad , Inhibidor 1 de Activador Plasminogénico , beta Catenina , Humanos , Obesidad/metabolismo , Obesidad/patología , Femenino , Inhibidor 1 de Activador Plasminogénico/metabolismo , beta Catenina/metabolismo , Integrina beta1/metabolismo , Matriz Extracelular/metabolismo , Neoplasias Endometriales/metabolismo , Neoplasias Endometriales/patología , Inhibidor Tisular de Metaloproteinasa-2/metabolismo , Animales , Osteonectina/metabolismo , Osteonectina/genética , Colágeno/metabolismo , Endometrio/metabolismo , Endometrio/patología , Colágeno Tipo I/metabolismo , Membrana Celular/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Péptidos y Proteínas de Señalización Intercelular
2.
Lung Cancer ; 190: 107533, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38520909

RESUMEN

Lung cancer is the leading cause of global cancer-related mortality resulting in âˆ¼ 1.8 million deaths annually. Systemic, molecular targeted, and immune therapies have provided significant improvements of survival outcomes for patients. However, drug resistance usually arises and there is an urgent need for novel therapy screening and personalized medicine. 3D patient-derived organoid (PDO) models have emerged as a more effective and efficient alternative for ex vivo drug screening than 2D cell culture and patient-derived xenograft (PDX) models. In this review, we performed an extensive search of lung cancer PDO-based ex vivo drug screening studies. Lung cancer PDOs were successfully established from fresh or bio-banked sections and/or biopsies, pleural effusions and PDX mouse models. PDOs were subject to ex vivo drug screening with chemotherapy, targeted therapy and/or immunotherapy. PDOs consistently recapitulated the genomic alterations and drug sensitivity of primary tumors. Although sample sizes of the previous studies were limited and some technical challenges remain, PDOs showed great promise in the screening of novel therapy drugs. With the technical advances of high throughput, tumor-on-chip, and combined microenvironment, the drug screening process using PDOs will enhance precision care of lung cancer patients.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Humanos , Animales , Ratones , Medicina de Precisión/métodos , Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Pulmón , Organoides/patología , Microambiente Tumoral
3.
Nat Commun ; 14(1): 6569, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848444

RESUMEN

While macrophage phagocytosis is an immune defense mechanism against invading cellular organisms, cancer cells expressing the CD47 ligand send forward signals to repel this engulfment. Here we report that the reverse signaling using CD47 as a receptor additionally enhances a pro-survival function of prostate cancer cells under phagocytic attack. Although low CD47-expressing cancer cells still allow phagocytosis, the reverse signaling delays the process, leading to incomplete digestion of the entrapped cells and subsequent tumor hybrid cell (THC) formation. Viable THCs acquire c-Myc from parental cancer cells to upregulate both M1- and M2-like macrophage polarization genes. Consequently, THCs imitating dual macrophage features can confound immunosurveillance, gaining survival advantage in the host. Furthermore, these cells intrinsically express low levels of androgen receptor and its targets, resembling an adenocarcinoma-immune subtype of metastatic castration-resistant prostate cancer. Therefore, phagocytosis-generated THCs may represent a potential target for treating the disease.


Asunto(s)
Antígeno CD47 , Macrófagos , Metástasis de la Neoplasia , Fagocitosis , Proteínas Proto-Oncogénicas c-myc , Escape del Tumor , Humanos , Masculino , Proteínas Portadoras , Antígeno CD47/metabolismo , Macrófagos/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Neoplasias de la Próstata/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/inmunología , Transducción de Señal , Escape del Tumor/genética , Escape del Tumor/inmunología , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/inmunología , Células Tumorales Cultivadas
4.
Cell Rep ; 42(9): 113067, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37659081

RESUMEN

Tumor-associated macrophages (TAMs) are integral to the development of complex tumor microenvironments (TMEs) and can execute disparate cellular programs in response to extracellular cues. However, upstream signaling processes underpinning this phenotypic plasticity remain to be elucidated. Here, we report that concordant AXL-STAT3 signaling in TAMs is triggered by lung cancer cells or cancer-associated fibroblasts in the cytokine milieu. This paracrine action drives TAM differentiation toward a tumor-promoting "M2-like" phenotype with upregulation of CD163 and putative mesenchymal markers, contributing to TAM heterogeneity and diverse cellular functions. One of the upregulated markers, CD44, mediated by AXL-IL-11-pSTAT3 signaling cascade, enhances macrophage ability to interact with endothelial cells and facilitate formation of primitive vascular networks. We also found that AXL-STAT3 inhibition can impede the recruitment of TAMs in a xenograft mouse model, thereby suppressing tumor growth. These findings suggest the potential application of AXL-STAT3-related markers to quantitatively assess metastatic potential and inform therapeutic strategies in lung cancer.


Asunto(s)
Neoplasias Pulmonares , Macrófagos Asociados a Tumores , Humanos , Animales , Ratones , Células Endoteliales , Transducción de Señal , Diferenciación Celular , Microambiente Tumoral , Línea Celular Tumoral
5.
Biomolecules ; 13(4)2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-37189451

RESUMEN

Many chronic diseases, including cancer and neurodegeneration, are linked to proteasome dysregulation. Proteasome activity, essential for maintaining proteostasis in a cell, is controlled by the gating mechanism and its underlying conformational transitions. Thus, developing effective methods to detect gate-related specific proteasome conformations could be a significant contribution to rational drug design. Since the structural analysis suggests that gate opening is associated with a decrease in the content of α-helices and ß-sheets and an increase in random coil structures, we decided to explore the application of electronic circular dichroism (ECD) in the UV region to monitor the proteasome gating. A comparison of ECD spectra of wild type yeast 20S proteasome (predominantly closed) and an open-gate mutant (α3ΔN) revealed an increased intensity in the ECD band at 220 nm, which suggests increased contents of random coil and ß-turn structures. This observation was further supported by evaluating ECD spectra of human 20S treated with low concentration of SDS, known as a gate-opening reagent. Next, to evaluate the power of ECD to probe a ligand-induced gate status, we treated the proteasome with H2T4, a tetracationic porphyrin that we showed previously to induce large-scale protein conformational changes upon binding to h20S. H2T4 caused a significant increase in the ECD band at 220 nm, interpreted as an induced opening of the 20S gate. In parallel, we imaged the gate-harboring alpha ring of the 20S with AFM, a technique that we used previously to visualize the predominantly closed gate in latent human or yeast 20S and the open gate in α3ΔN mutant. The results were convergent with the ECD data and showed a marked decrease in the content of closed-gate conformation in the H2T4-treated h20S. Our findings provide compelling support for the use of ECD measurements to conveniently monitor proteasome conformational changes related to gating phenomena. We predict that the observed association of spectroscopic and structural results will help with efficient design and characterization of exogenous proteasome regulators.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Humanos , Dicroismo Circular , Complejo de la Endopetidasa Proteasomal/química , Conformación Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Microscopía de Fuerza Atómica
6.
Nat Commun ; 14(1): 2367, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37185259

RESUMEN

Vascular mechanisms of Alzheimer's disease (AD) may constitute a therapeutically addressable biological pathway underlying dementia. We previously demonstrated that soluble pathogenic forms of tau (tau oligomers) accumulate in brain microvasculature of AD and other tauopathies, including prominently in microvascular endothelial cells. Here we show that soluble pathogenic tau accumulates in brain microvascular endothelial cells of P301S(PS19) mice modeling tauopathy and drives AD-like brain microvascular deficits. Microvascular impairments in P301S(PS19) mice were partially negated by selective removal of pathogenic soluble tau aggregates from brain. We found that similar to trans-neuronal transmission of pathogenic forms of tau, soluble tau aggregates are internalized by brain microvascular endothelial cells in a heparin-sensitive manner and induce microtubule destabilization, block endothelial nitric oxide synthase (eNOS) activation, and potently induce endothelial cell senescence that was recapitulated in vivo in microvasculature of P301S(PS19) mice. Our studies suggest that soluble pathogenic tau aggregates mediate AD-like brain microvascular deficits in a mouse model of tauopathy, which may arise from endothelial cell senescence and eNOS dysfunction triggered by internalization of soluble tau aggregates.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Proteínas tau/genética , Proteínas tau/metabolismo , Células Endoteliales/metabolismo , Tauopatías/metabolismo , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Senescencia Celular , Ratones Transgénicos
7.
Biomolecules ; 13(3)2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36979414

RESUMEN

The proteolytic active sites of the 26S proteasome are sequestered within the catalytic chamber of its 20S core particle (CP). Access to this chamber is through a narrow channel defined by the seven outer α subunits. In the resting state, the N-termini of neighboring α subunits form a gate blocking access to the channel. The attachment of the activators or regulatory particles rearranges the blocking α subunit N-termini facilitating the entry of substrates. By truncating or mutating each of the participating α N-termini, we report that whereas only a few N-termini are important for maintaining the closed gate, all seven N-termini participate in the open gate. Specifically, the open state is stabilized by a hydrogen bond between an invariant tyrosine (Y) in each subunit with a conserved aspartate (D) in its counterclockwise neighbor. The lone exception is the α1-α2 pair leaving a gap in the ring circumference. The third residue (X) of this YD(X) motif aligns with the open channel. Phenylalanine at this position in the α2 subunit comes in direct contact with the translocating substrate. Consequently, deletion of the α2 N-terminal tail attenuates proteolysis despite the appearance of an open gate state. In summary, the interlacing N-terminal YD(X) motifs regulate both the gating and translocation of the substrate.


Asunto(s)
Complejo de la Endopetidasa Proteasomal , Complejo de la Endopetidasa Proteasomal/metabolismo , Modelos Moleculares , Proteolisis
8.
Sci Adv ; 8(23): eabk2252, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35675410

RESUMEN

The proteasome has key roles in neuronal proteostasis, including the removal of misfolded and oxidized proteins, presynaptic protein turnover, and synaptic efficacy and plasticity. Proteasome dysfunction is a prominent feature of Alzheimer's disease (AD). We show that prevention of proteasome dysfunction by genetic manipulation delays mortality, cell death, and cognitive deficits in fly and cell culture AD models. We developed a transgenic mouse with neuronal-specific proteasome overexpression that, when crossed with an AD mouse model, showed reduced mortality and cognitive deficits. To establish translational relevance, we developed a set of TAT-based proteasome-activating peptidomimetics that stably penetrated the blood-brain barrier and enhanced 20S/26S proteasome activity. These agonists protected against cell death, cognitive decline, and mortality in cell culture, fly, and mouse AD models. The protective effects of proteasome overexpression appear to be driven, at least in part, by the proteasome's increased turnover of the amyloid precursor protein along with the prevention of overall proteostatic dysfunction.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Drosophila melanogaster , Ratones , Ratones Transgénicos , Complejo de la Endopetidasa Proteasomal/metabolismo
9.
Cancer Res ; 81(15): 4110-4123, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34045187

RESUMEN

Aggressive tumors of epithelial origin shed cells that intravasate and become circulating tumor cells (CTC). The CTCs that are able to survive the stresses encountered in the bloodstream can then seed metastases. We demonstrated previously that CTCs isolated from the blood of prostate cancer patients display specific nanomechanical phenotypes characteristic of cell endurance and invasiveness and patient sensitivity to androgen deprivation therapy. Here we report that patient-isolated CTCs are nanomechanically distinct from cells randomly shed from the tumor, with high adhesion as the most distinguishing biophysical marker. CTCs uniquely coisolated with macrophage-like cells bearing the markers of tumor-associated macrophages (TAM). The presence of these immune cells was indicative of a survival-promoting phenotype of "mechanical fitness" in CTCs based on high softness and high adhesion as determined by atomic force microscopy. Correlations between enumeration of macrophages and mechanical fitness of CTCs were strong in patients before the start of hormonal therapy. Single-cell proteomic analysis and nanomechanical phenotyping of tumor cell-macrophage cocultures revealed that macrophages promoted epithelial-mesenchymal plasticity in prostate cancer cells, manifesting in their mechanical fitness. The resulting softness and adhesiveness of the mechanically fit CTCs confer resistance to shear stress and enable protective cell clustering. These findings suggest that selected tumor cells are coached by TAMs and accompanied by them to acquire intermediate epithelial/mesenchymal status, thereby facilitating survival during the critical early stage leading to metastasis. SIGNIFICANCE: The interaction between macrophages and circulating tumor cells increases the capacity of tumor cells to initiate metastasis and may constitute a new set of blood-based targets for pharmacologic intervention.


Asunto(s)
Macrófagos/metabolismo , Células Neoplásicas Circulantes/metabolismo , Neoplasias de la Próstata/inmunología , Línea Celular Tumoral , Humanos , Masculino , Fenotipo
10.
Molecules ; 25(6)2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235805

RESUMEN

The proteasome is a pivotal element of controlled proteolysis, responsible for the catabolic arm of proteostasis. By inducing apoptosis, small molecule inhibitors of proteasome peptidolytic activities are successfully utilized in treatment of blood cancers. However, the clinical potential of proteasome activation remains relatively unexplored. In this work, we introduce short TAT peptides derived from HIV-1 Tat protein and modified with synthetic turn-stabilizing residues as proteasome agonists. Molecular docking and biochemical studies point to the α1/α2 pocket of the core proteasome α ring as the binding site of TAT peptides. We postulate that the TATs' pharmacophore consists of an N-terminal basic pocket-docking "activation anchor" connected via a ß turn inducer to a C-terminal "specificity clamp" that binds on the proteasome α surface. By allosteric effects-including destabilization of the proteasomal gate-the compounds substantially augment activity of the core proteasome in vitro. Significantly, this activation is preserved in the lysates of cultured cells treated with the compounds. We propose that the proteasome-stimulating TAT pharmacophore provides an attractive lead for future clinical use.


Asunto(s)
Péptidos/química , Péptidos/farmacología , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Regulación Alostérica , Sitios de Unión , Línea Celular Tumoral , Quimotripsina/química , Citoplasma/metabolismo , Humanos , Microscopía de Fuerza Atómica , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/química , Péptidos/síntesis química , Complejo de la Endopetidasa Proteasomal/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA