Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nucl Med Biol ; 138-139: 108944, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39154412

RESUMEN

BACKGROUND: Targeted alpha therapy (TAT) of somatostatin receptor-2 (SSTR2) positive neuroendocrine tumors (NETs) involving Ac-225 ([225Ac]Ac-DOTA-TATE) has previously demonstrated improved therapeutic efficacy over conventional beta particle-emitting peptide receptor radionuclide therapy agents. DOTA-TATE requires harsh radiolabeling conditions for chelation of [225Ac]Ac3+, which can limit the achievable molar activities and thus therapeutic efficacy of such TAT treatments. Macropa-TATE was recently highlighted as a potential alternative to DOTA-TATE, owing to the mild radiolabeling conditions and high affinity toward [225Ac]Ac3+; however, elevated liver and kidney uptake were noted as a major limitation and a suitable imaging radionuclide is yet to be reported, which will be required for patient dosimetry studies and assessment of therapeutic benefit. Previously, [155Tb]Tb-crown-TATE has shown highly effective imaging of NETs in preclinical SPECT/CT studies, with high tumor uptake and low non-target accumulation; these favourable properties and the versatile coordination behavior of the crown chelator may therefore show promise for combination with Ac-225 for TAT. METHODS: Crown-TATE was labeled with Ac-225, and radiochemical yield was analyzed as the function of crown-TATE concentration. LogD7.4 was measured as the indication of hydrophilicity. Free [225Ac]Ac3+ release from [225Ac]Ac-crown-TATE in human serum was studied. Biodistribution studies of [225Ac]Ac-crown-TATE in mice bearing AR42J tumors was evaluated at 1, 4, 24, 48, and 120 h, and the absorbed dose to major organs calculated. Therapy-monitoring studies with AR42J tumor bearing mice were undertaken using 30 kBq and 55 kBq doses of [225Ac]Ac-crown-TATE and compared to controls treated with PBS or crown-TATE. RESULTS: [225Ac]Ac-crown-TATE was successfully prepared with high molar activity (640 kBq/nmol), and characterized as a moderately hydrophilic radioligand (LogD7.4 = -1.355 ± 0.135). No release of bound Ac-225 was observed over 9 days in human serum. Biodistribution studies of [225Ac]Ac-crown-TATE showed good initial tumor uptake (11.1 ± 1.7% IA/g at 4 h) which was sustained up to 120 h p.i. (6.92 ± 2.03% IA/g). Dosimetry calculations showed the highest absorbed dose was delivered to the tumors. Therapy monitoring studies demonstrated significant (log-rank test, P < 0.005) improved survival in both treatment groups compared to controls. CONCLUSIONS: This preclinical study demonstrated the therapeutic efficacy of [225Ac]Ac-crown-TATE for treatment of NETs, and highlights the potential of using crown chelator for stable chelation of Ac-225 under mild conditions.

2.
Eur J Pharm Biopharm ; 196: 114180, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237643

RESUMEN

Hepatocellular carcinoma (HCC) is widely known to be chemo-resistant and presents with significant liver disease resulting in low tolerability to systemic chemotherapy. As a counter measure, more targeted therapies such as trans-arterial chemoembolization (TACE) and trans-arterial radioembolization (TARE) have been developed. To further optimize these therapies, animal models are critical in elucidating the molecular events in disease progression and test new treatment options. The present study focuses on the development of a hepatoma bearing rat model. N1S1 rat hepatoma cells were transfected by a lentiviral method and injected into the liver of Sprague Dawley (SD) and Rowett Nude (RNU) rats. Longitudinal tumor growth was observed by bioluminescence imaging (BLI) and liver/tumor histology. In both models, tumors were visible within 4 days post cell inoculation. Tumor take rates were 52 % and 73 % for male and female SD rats, respectively, and 100 % for male RNU rats. By day 12 and 15 post inoculation, we recorded complete tumor regression in male and female SD rats. Liver histology showed advanced fibrosis in the tumor regressed SD rats, whilst RNU rats exhibited the characteristic sheet pattern of Novikoff tumor with mild liver fibrosis. Increased CD3 and TUNEL staining observed in SD rat livers may be key factors for tumor regression. Our data reveal that the immunocompetent SD rats are not recommended as a model for therapeutic investigations. The immunosuppressed RNU rats, however, are characterized by consistent and reliable tumor growth and thus a desirable model for future therapeutic investigations.


Asunto(s)
Carcinoma Hepatocelular , Quimioembolización Terapéutica , Neoplasias Hepáticas , Ratas , Masculino , Femenino , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/terapia , Ratas Sprague-Dawley , Quimioembolización Terapéutica/métodos , Modelos Animales
3.
Bioconjug Chem ; 33(12): 2381-2397, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36378809

RESUMEN

A new, high-denticity, bifunctional ligand─H3TPAN-triazole-Bn-NH2─has been synthesized and studied in complexation with [225Ac]Ac3+ and [111In]In3+ for radiopharmaceutical applications. The bifunctional chelator is readily synthesized, using a high-yielding four-step prep, which is highly adaptable and allows for straightforward incorporation of different covalent linkers using CuI-catalyzed alkyne-azide cycloaddition (click) chemistry. Nuclear magnetic resonance (NMR) studies of H3TPAN-triazole-Bn-NH2 with La3+ and In3+ metal ions show the formation of a single, asymmetric complex with each ion in solution, corroborated by density functional theory (DFT) calculations. Radiolabeling studies with [225Ac]Ac3+ and [111In]In3+ showed highly effective complexation, achieving quantitative radiochemical conversions at low ligand concentrations (<10-6 M) under mild conditions (RT, 10 min), which is further accompanied by high stability in human serum. The bioconjugate─H3TPAN-triazole-Bn-Aoc-Pip-Nle-CycMSHhex─was prepared for targeting of MC1R-positive tumors, and the corresponding 111In-radiolabeled tracer was studied in vivo. SPECT/CT and biodistribution studies in C57BL/6J mice bearing B16-F10 tumors were performed, with the radiotracer showing good in vivo stability; tumor uptake was achieved. This work highlights a new promising and versatile bifunctional chelator, easily prepared and encouraging for 225Ac/111In theranostics.


Asunto(s)
Medicina de Precisión , Triazoles , Ratones , Animales , Humanos , Distribución Tisular , Línea Celular Tumoral , Ratones Endogámicos C57BL , Quelantes/química , Radiofármacos/química
4.
Bioconjug Chem ; 33(10): 1900-1921, 2022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36126334

RESUMEN

The nuclear decay characteristics of 225Ac (Eα = 5-8 MeV, linear energy transfer (LET) = ∼100 keV/µm, t1/2 = 9.92 days) are well recognized as advantageous for the treatment of primary and metastatic tumors; however, suitable chelation systems are required, which can accommodate this radiometal. Since 225Ac does not possess any suitable low-energy, high abundance γ-ray emissions for nuclear imaging, there is a clear need for the development of other companion radionuclides with similar coordination characteristics and comparable half-lives, which can be applied in diagnostics. H4picoopa was designed and executed as a high-denticity ligand for chelation of [225Ac]Ac3+, and the complexation characteristics have been explored through nuclear magnetic resonance (NMR) spectroscopy, solution thermodynamic stability studies, and radiolabeling. The ligand shows highly favorable complexation with La3+ (pM = 17.6), Lu3+ (pM = 21.3), and In3+ (pM = 31.2) and demonstrates effective radiolabeling of both [225Ac]Ac3+ and [111In]In3+ ions achieving quantitative radiochemical conversions (RCCs) under mild conditions (RT, 10 min), accompanied by high serum stability (>97% radiochemical purity (RCP) over 6 days). A bifunctional analogue of H4picoopa was synthesized and conjugated to the Pip-Nle-CycMSHhex peptide for targeting of MC1R positive melanoma tumors. In vivo single-photon emission computed tomography (SPECT) and biodistribution studies of the 111In-radiolabeled bioconjugate in mice bearing B16-F10 tumors showed good radiotracer stability, although improved tumor targeting could not be achieved for imaging purposes. This work highlights H4picoopa as a very promising platform for application of [225Ac]Ac3+ and [111In]In3+ as a theranostic pair and allows great versatility for the incorporation of other directing vectors. The logical synthetic approach reported here for bifunctional H4picoopa, involving an azide-functionalized covalent linker and CuI-catalyzed alkyne-azide cycloaddition, allows for ease of optimization of bioconjugate pharmacokinetics and will be valuable for further radiopharmaceutical applications moving forward.


Asunto(s)
Melanoma , Radiofármacos , Animales , Ratones , Radiofármacos/química , Distribución Tisular , Ligandos , Medicina de Precisión , Azidas , Quelantes/química , Radioisótopos , Línea Celular Tumoral , Péptidos , Alquinos
5.
Bioconjug Chem ; 33(3): 505-522, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35239331

RESUMEN

With the emergence of [225Ac]Ac3+ as a therapeutic radionuclide for targeted α therapy (TAT), access to clinical quantities of the potent, short-lived α-emitter [213Bi]Bi3+ (t1/2 = 45.6 min) will increase over the next decade. With this in mind, the nonadentate chelator, H4neunpa-NH2, has been investigated as a ligand for chelation of [213Bi]Bi3+ in combination with [111In]In3+ as a suitable radionuclidic pair for TAT and single photon emission computed tomography (SPECT) diagnostics. Nuclear magnetic resonance (NMR) spectroscopy was utilized to assess the coordination characteristics of H4neunpa-NH2 on complexation of [natBi]Bi3+, while the solid-state structure of [natBi][Bi(neunpa-NH3)] was characterized via X-ray diffraction (XRD) studies, and density functional theory (DFT) calculations were performed to elucidate the conformational geometries of the metal complex in solution. H4neunpa-NH2 exhibited fast complexation kinetics with [213Bi]Bi3+ at RT achieving quantitative radiolabeling within 5 min at 10-8 M ligand concentration, which was accompanied by the formation of a kinetically inert complex. Two bioconjugates incorporating the melanocortin 1 receptor (MC1R) targeting peptide Nle-CycMSHhex were synthesized featuring two different covalent linkers for in vivo evaluation with [213Bi]Bi3+ and [111In]In3+. High molar activities of 7.47 and 21.0 GBq/µmol were achieved for each of the bioconjugates with [213Bi]Bi3+. SPECT/CT scans of the [111In]In3+-labeled tracer showed accumulation in the tumor over time, which was accompanied by high liver uptake and clearance via the hepatic pathway due to the high lipophilicity of the covalent linker. In vivo biodistribution studies in C57Bl/6J mice bearing B16-F10 tumor xenografts showed good tumor uptake (5.91% ID/g) at 1 h post-administration with [213Bi][Bi(neunpa-Ph-Pip-Nle-CycMSHhex)]. This study demonstrates H4neunpa-NH2 to be an effective chelating ligand for [213Bi]Bi3+ and [111In]In3+, with promising characteristics for further development toward theranostic applications.


Asunto(s)
Radiofármacos , alfa-MSH , Animales , Línea Celular Tumoral , Quelantes/química , Humanos , Ligandos , Ratones , Ratones Endogámicos C57BL , Radiofármacos/química , Radiofármacos/uso terapéutico , Nanomedicina Teranóstica , Distribución Tisular , alfa-MSH/química , alfa-MSH/metabolismo
6.
Sci Rep ; 11(1): 2097, 2021 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-33483550

RESUMEN

Pathological links between neurodegenerative disease and cancer are emerging. LRRK2 overactivity contributes to Parkinson's disease, whereas our previous analyses of public cancer patient data revealed that decreased LRRK2 expression is associated with lung adenocarcinoma (LUAD). The clinical and functional relevance of LRRK2 repression in LUAD is unknown. Here, we investigated associations between LRRK2 expression and clinicopathological variables in LUAD patient data and asked whether LRRK2 knockout promotes murine lung tumorigenesis. In patients, reduced LRRK2 was significantly associated with ongoing smoking and worse survival, as well as signatures of less differentiated LUAD, altered surfactant metabolism and immunosuppression. We identified shared transcriptional signals between LRRK2-low LUAD and postnatal alveolarization in mice, suggesting aberrant activation of a developmental program of alveolar growth and differentiation in these tumors. In a carcinogen-induced murine lung cancer model, multiplex IHC confirmed that LRRK2 was expressed in alveolar type II (AT2) cells, a main LUAD cell-of-origin, while its loss perturbed AT2 cell morphology. LRRK2 knockout in this model significantly increased tumor initiation and size, demonstrating that loss of LRRK2, a key Parkinson's gene, promotes lung tumorigenesis.


Asunto(s)
Adenocarcinoma/inducido químicamente , Adenocarcinoma/genética , Carcinógenos/toxicidad , Predisposición Genética a la Enfermedad , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Neoplasias Pulmonares/inducido químicamente , Neoplasias Pulmonares/genética , Enfermedad de Parkinson/genética , Adenocarcinoma/patología , Diferenciación Celular , Cocarcinogénesis , Inestabilidad Genómica , Humanos , Neoplasias Pulmonares/patología , Fumar
7.
Invest New Drugs ; 32(6): 1071-82, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25064374

RESUMEN

Irinotecan is a water-soluble camptothecin derivative with clinical activity against colorectal and small cell lung cancers and is currently a standard of care therapeutic in the treatment of colorectal cancer in combination with 5-fluorouracil. One of the major clinical issues limiting the use of irinotecan is gastrointestinal toxicity manifested as life-threatening diarrhea which is reported in up to 45% of treated patients. The studies summarized here tested, in a rat model of irinotecan-associated gastro-intestinal toxicity, whether a lipid nanoparticle formulation of irinotecan, Irinophore C™, mitigated early-onset or late-onset diarrhea when given at doses equivalent to unformulated irinotecan that engenders both early- and late-onset diarrhea. Specifically, rats administered intravenously on two consecutive days with unformulated irinotecan at 170 mg/kg then 160 mg/kg experienced transient early-onset diarrhea after each administration and then experienced significant late-onset diarrhea peaking 4 days after treatment. Irinophore C™ given at the identical dose and schedule did not elicit either early- or late-onset diarrhea in any animals. When Irinophore C™ was combined with 5-fluorouracil there was also no early- or late-onset diarrhea observed. Histopathological analysis of the gastro-intestinal tract confirmed that the effects associated with irinotecan treatment were absent in rats given Irinophore C™ at the identical dose. Pharmacokinetic analysis demonstrated significantly higher systemic concentrations of irinotecan in rats given the nanoparticle formulation compared to those given unformulated irinotecan. These results demonstrate that the Irinophore C™ formulation is significantly less toxic than irinotecan, used either as a single agent or in combination with 5-fluorouracil, in a rat model of irinotecan-induced gastrointestinal toxicity.


Asunto(s)
Antineoplásicos Fitogénicos/administración & dosificación , Camptotecina/análogos & derivados , Diarrea/prevención & control , Nanopartículas/administración & dosificación , Animales , Antimetabolitos Antineoplásicos/administración & dosificación , Antineoplásicos Fitogénicos/efectos adversos , Antineoplásicos Fitogénicos/sangre , Antineoplásicos Fitogénicos/farmacocinética , Camptotecina/administración & dosificación , Camptotecina/efectos adversos , Camptotecina/sangre , Camptotecina/farmacocinética , Colesterol/química , Colon/patología , Diarrea/inducido químicamente , Diarrea/patología , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Fluorouracilo/administración & dosificación , Intestino Delgado/patología , Irinotecán , Liposomas , Fosfatidilcolinas/química , Ratas Sprague-Dawley
8.
Clin Cancer Res ; 19(4): 865-77, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23303216

RESUMEN

PURPOSE: To provide proof-of-concept data to support use of Doxil-liposomal topotecan (Topophore C) combinations to treat ovarian cancer. EXPERIMENTAL DESIGN: ES-2, OVCAR-3, and SKOV-3 ovarian cancer cell lines were treated with doxorubicin-topotecan combinations by exposing the cells to drugs from 1 to 72 hours. Pharmacokinetic analysis was conducted following administration of liposomal formulations of these drugs alone and in combination. Efficacy assessments were completed in ES-2 and SKOV-3 ovarian cancer models. RESULTS: On the basis of drug doses capable of achieving 50% reduction in cell viability over 72 hours, doxorubicin-topotecan combinations were additive in SKOV-3 but highly synergistic in ES-2 and OVCAR-3 cells. Favorable drug-drug interactions increased with increased drug exposure time. Topophore C pharmacokinetic remained unaffected when co-administered with Doxil. In the ES-2 model, Doxil at maximum tolerated dose (MTD 7.5 mg/kg) in combination with free topotecan (MTD 15 mg/kg) did not enhance median survival time (MST) over that achieved with topotecan alone. In contrast, MST was increased to 52 days with combination of Topophore C (MTD 2.5 mg/kg) and Doxil (7.5 mg/kg) compared with untreated animals (MST 18 days) or those treated with Topophore C alone (MTD 5 mg/kg, MST 40 days). In the SKOV-3 model, combination treatments showed better therapeutic efficacy than the individual drugs. CONCLUSIONS: Topotecan-doxorubicin combinations produced additive or synergistic effects which were best achieved when the tumor cells were exposed to drugs over extended time. Doxil-Topophore C combinations are therapeutically superior as judged in two ovarian cancer models. Clin Cancer Res; 19(4); 865-77. ©2012 AACR.


Asunto(s)
Doxorrubicina/administración & dosificación , Recurrencia Local de Neoplasia/tratamiento farmacológico , Neoplasias Ováricas/tratamiento farmacológico , Topotecan/administración & dosificación , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Liposomas , Recurrencia Local de Neoplasia/patología , Neoplasias Ováricas/patología , Polietilenglicoles , Resultado del Tratamiento
9.
J Pharm Sci ; 102(1): 227-36, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23132529

RESUMEN

Polyethylene glycol (PEG) has been used widely in liposomal formulations as a strategy to inhibit opsonization by plasma proteins and to prolong liposome plasma circulation time. PEG can be incorporated onto the surface of liposomes either during the spontaneous self-assembling process or inserted after vesicle formation. The advantages of employing the PEG postinsertion method include improved drug encapsulation efficiency and the ability to incorporate PEG conjugates for enhanced cell binding and uptake. In this study, we propose to evaluate a cationic lipid nanoparticle formulation containing two PEGylation steps: pre- and post-siRNA insertion. Our results indicate that formulations consisting of the extra PEG post-insertion step significantly increased siRNA circulation in the plasma by two-folds in comparison with the formulations consisting of only the single PEGylation step. Moreover, this formulation was able to efficiently carry siRNA to the tumor site, increase siRNA stability and significantly downregulate luciferase mRNA expression by >50% when compared with the controls in an intraperitoneal and subcutaneous breast cancer tumor model. Overall, our cationic lipid nanoparticle formulation displayed enhanced plasma circulation, reduced liver accumulation, enhanced tumor targeting, and effective gene knockdown--demonstrating excellent utility for the delivery of siRNA.


Asunto(s)
Neoplasias de la Mama/terapia , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Nanopartículas , Polietilenglicoles/química , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Cationes , Línea Celular Tumoral , Femenino , Genes Reporteros , Liposomas , Hígado/metabolismo , Luciferasas/genética , Luciferasas/metabolismo , Ratones , Microscopía Fluorescente , Estabilidad del ARN , ARN Interferente Pequeño/sangre , ARN Interferente Pequeño/química , ARN Interferente Pequeño/farmacocinética , Distribución Tisular , Transfección , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Cancer Biol Ther ; 11(9): 826-38, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21358264

RESUMEN

A significant issue in drug efficacy studies is animal study design. Here we hypothesize that when evaluating new or existing therapeutics for the treatment of cancer, the location of disease burden will influence drug efficacy. To study this, Female NCr nude mice were inoculated with luciferase-positive human breast cancer cells (LCC6WT-luc) orthotopically (o.t.), intraperitoneally (i.p.) or intracardiacly (i.c.) to create localized, ascites or disseminated disease, respectively. Tumor development was monitored using bioluminescence imaging. Docetaxel (Dt) pharmacokinetics and distribution to sites of tumor growth were determined. Disease progression was followed in animals treated with Dt alone and in combination with QLT0267, an Integrin Linked Kinase inhibitor. Tumor related morbidity was most rapid when cells were inoculated i.c., where disease progression was observed in brain, ovaries, adrenal glands, and lungs. Dt pharmacokinetics were comparable regardless of the model used (mean plasma AUC0-24 hrs 482.6 ng/ml*hr), however, Dt levels were lowest in those tissues developing disease following i.c. cell injection. Treatment with low dose Dt (5 mg/kg) increased overall survival and reduced tumor cell growth in all three models but the activity was greatest in mice with orthotopic tumors. Higher doses of Dt (15 mg/kg) was able to prolong survival in animals bearing i.p. tumors but not i.c. tumors. Addition of QLT0267 provided no added benefit above Dt alone in the disseminated model. These studies highlight a need for more comprehensive in vivo efficacy studies designed to assess multiple disease models and multiple endpoints, focusing analysis of drug parameters on the most chemoresistant disease.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/enzimología , Luciferasas/análisis , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Taxoides/farmacología , Animales , Compuestos Azo/administración & dosificación , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Docetaxel , Femenino , Humanos , Luciferasas/genética , Luciferasas/metabolismo , Sustancias Luminiscentes/análisis , Sustancias Luminiscentes/metabolismo , Ratones , Ratones Desnudos , Proteínas Serina-Treonina Quinasas/análisis , Pirazoles/administración & dosificación , Reproducibilidad de los Resultados , Taxoides/administración & dosificación , Taxoides/farmacocinética , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA