Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nat Commun ; 15(1): 3793, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714822

RESUMEN

Across the cell cycle, mitochondrial dynamics are regulated by a cycling wave of actin polymerization/depolymerization. In metaphase, this wave induces actin comet tails on mitochondria that propel these organelles to drive spatial mixing, resulting in their equitable inheritance by daughter cells. In contrast, during interphase the cycling actin wave promotes localized mitochondrial fission. Here, we identify the F-actin nucleator/elongator FMNL1 as a positive regulator of the wave. FMNL1-depleted cells exhibit decreased mitochondrial polarization, decreased mitochondrial oxygen consumption, and increased production of reactive oxygen species. Accompanying these changes is a loss of hetero-fusion of wave-fragmented mitochondria. Thus, we propose that the interphase actin wave maintains mitochondrial homeostasis by promoting mitochondrial content mixing. Finally, we investigate the mechanistic basis for the observation that the wave drives mitochondrial motility in metaphase but mitochondrial fission in interphase. Our data indicate that when the force of actin polymerization is resisted by mitochondrial tethering to microtubules, as in interphase, fission results.


Asunto(s)
Actinas , Homeostasis , Interfase , Mitocondrias , Dinámicas Mitocondriales , Actinas/metabolismo , Mitocondrias/metabolismo , Humanos , Forminas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Células HeLa , Microtúbulos/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Animales
2.
bioRxiv ; 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38405741

RESUMEN

Myosin-Is colocalize with Arp2/3 complex-nucleated actin networks at sites of membrane protrusion and invagination, but the mechanisms by which myosin-I motor activity coordinates with branched actin assembly to generate force are unknown. We mimicked the interplay of these proteins using the "comet tail" bead motility assay, where branched actin networks are nucleated by Arp2/3 complex on the surface of beads coated with myosin-I and the WCA domain of N-WASP. We observed that myosin-I increased bead movement efficiency by thinning actin networks without affecting growth rates. Remarkably, myosin-I triggered symmetry breaking and comet-tail formation in dense networks resistant to spontaneous fracturing. Even with arrested actin assembly, myosin-I alone could break the network. Computational modeling recapitulated these observations suggesting myosin-I acts as a repulsive force shaping the network's architecture and boosting its force-generating capacity. We propose that myosin-I leverages its power stroke to amplify the forces generated by Arp2/3 complex-nucleated actin networks.

3.
J Cell Biol ; 222(10)2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37549220

RESUMEN

Myosins are required for clathrin-mediated endocytosis, but their precise molecular roles in this process are not known. This is, in part, because the biophysical properties of the relevant motors have not been investigated. Myosins have diverse mechanochemical activities, ranging from powerful contractility against mechanical loads to force-sensitive anchoring. To better understand the essential molecular contribution of myosin to endocytosis, we studied the in vitro force-dependent kinetics of the Saccharomyces cerevisiae endocytic type I myosin called Myo5, a motor whose role in clathrin-mediated endocytosis has been meticulously studied in vivo. We report that Myo5 is a low-duty-ratio motor that is activated ∼10-fold by phosphorylation and that its working stroke and actin-detachment kinetics are relatively force-insensitive. Strikingly, the in vitro mechanochemistry of Myo5 is more like that of cardiac myosin than that of slow anchoring myosin-1s found on endosomal membranes. We, therefore, propose that Myo5 generates power to augment actin assembly-based forces during endocytosis in cells.


Asunto(s)
Actinas , Miosina Tipo I , Proteínas de Saccharomyces cerevisiae , Clatrina , Miosina Tipo I/genética , Miosinas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
J Biol Chem ; 299(8): 104961, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37380077

RESUMEN

Myosin-1D (myo1D) is important for Drosophila left-right asymmetry, and its effects are modulated by myosin-1C (myo1C). De novo expression of these myosins in nonchiral Drosophila tissues promotes cell and tissue chirality, with handedness depending on the paralog expressed. Remarkably, the identity of the motor domain determines the direction of organ chirality, rather than the regulatory or tail domains. Myo1D, but not myo1C, propels actin filaments in leftward circles in in vitro experiments, but it is not known if this property contributes to establishing cell and organ chirality. To further explore if there are differences in the mechanochemistry of these motors, we determined the ATPase mechanisms of myo1C and myo1D. We found that myo1D has a 12.5-fold higher actin-activated steady-state ATPase rate, and transient kinetic experiments revealed myo1D has an 8-fold higher MgADP release rate compared to myo1C. Actin-activated phosphate release is rate limiting for myo1C, whereas MgADP release is the rate-limiting step for myo1D. Notably, both myosins have among the tightest MgADP affinities measured for any myosin. Consistent with ATPase kinetics, myo1D propels actin filaments at higher speeds compared to myo1C in in vitro gliding assays. Finally, we tested the ability of both paralogs to transport 50 nm unilamellar vesicles along immobilized actin filaments and found robust transport by myo1D and actin binding but no transport by myo1C. Our findings support a model where myo1C is a slow transporter with long-lived actin attachments, whereas myo1D has kinetic properties associated with a transport motor.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Lateralidad Funcional , Miosina Tipo I , Animales , Actinas/metabolismo , Cinética , Miosina Tipo I/química , Miosina Tipo I/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Dominios Proteicos , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/enzimología
5.
bioRxiv ; 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-36993306

RESUMEN

Myosins are required for clathrin-mediated endocytosis, but their precise molecular roles in this process are not known. This is, in part, because the biophysical properties of the relevant motors have not been investigated. Myosins have diverse mechanochemical activities, ranging from powerful contractility against mechanical loads to force-sensitive anchoring. To better understand the essential molecular contribution of myosin to endocytosis, we studied the in vitro force-dependent kinetics of the Saccharomyces cerevisiae endocytic type I myosin called Myo5, a motor whose role in clathrin-mediated endocytosis has been meticulously studied in vivo. We report that Myo5 is a low-duty-ratio motor that is activated ∼10-fold by phosphorylation, and that its working stroke and actin-detachment kinetics are relatively force-insensitive. Strikingly, the in vitro mechanochemistry of Myo5 is more like that of cardiac myosin than like that of slow anchoring myosin-1s found on endosomal membranes. We therefore propose that Myo5 generates power to augment actin assembly-based forces during endocytosis in cells. Summary: Pedersen, Snoberger et al. measure the force-sensitivity of the yeast endocytic the myosin-1 called Myo5 and find that it is more likely to generate power than to serve as a force-sensitive anchor in cells. Implications for Myo5's role in clathrin-mediated endocytosis are discussed.

6.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36744380

RESUMEN

Mitochondrial homeostasis requires a dynamic balance of fission and fusion. The actin cytoskeleton promotes fission, and we found that the mitochondrially localized myosin, myosin 19 (Myo19), is integral to this process. Myo19 knockdown induced mitochondrial elongation, whereas Myo19 overexpression induced fragmentation. This mitochondrial fragmentation was blocked by a Myo19 mutation predicted to inhibit ATPase activity and strong actin binding but not by mutations predicted to affect the working stroke of the motor that preserve ATPase activity. Super-resolution imaging indicated a dispersed localization of Myo19 on mitochondria, which we found to be dependent on metaxins. These observations suggest that Myo19 acts as a dynamic actin-binding tether that facilitates mitochondrial fragmentation. Myo19-driven fragmentation was blocked by depletion of either the CAAX splice variant of the endoplasmic reticulum (ER)-anchored formin INF2 or the mitochondrially localized F-actin nucleator Spire1C (a splice variant of Spire1), which together polymerize actin at sites of mitochondria-ER contact for fission. These observations imply that Myo19 promotes fission by stabilizing mitochondria-ER contacts; we used a split-luciferase system to demonstrate a reduction in these contacts following Myo19 depletion. Our data support a model in which Myo19 tethers mitochondria to ER-associated actin to promote mitochondrial fission.


Asunto(s)
Actinas , Dinámicas Mitocondriales , Actinas/metabolismo , Miosinas/metabolismo , Mitocondrias/metabolismo , Retículo Endoplásmico/metabolismo
7.
J Biol Chem ; 299(2): 102906, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36642185

RESUMEN

Myosin-19 (Myo19) controls the size, morphology, and distribution of mitochondria, but the underlying role of Myo19 motor activity is unknown. Complicating mechanistic in vitro studies, the identity of the light chains (LCs) of Myo19 remains unsettled. Here, we show by coimmunoprecipitation, reconstitution, and proteomics that the three IQ motifs of human Myo19 expressed in Expi293 human cells bind regulatory light chain (RLC12B) and calmodulin (CaM). We demonstrate that overexpression of Myo19 in HeLa cells enhances the recruitment of both Myo19 and RLC12B to mitochondria, suggesting cellular association of RLC12B with the motor. Further experiments revealed that RLC12B binds IQ2 and is flanked by two CaM molecules. In vitro, we observed that the maximal speed (∼350 nm/s) occurs when Myo19 is supplemented with CaM, but not RLC12B, suggesting maximal motility requires binding of CaM to IQ-1 and IQ-3. The addition of calcium slowed actin gliding (∼200 nm/s) without an apparent effect on CaM affinity. Furthermore, we show that small ensembles of Myo19 motors attached to quantum dots can undergo processive runs over several microns, and that calcium reduces the attachment frequency and run length of Myo19. Together, our data are consistent with a model where a few single-headed Myo19 molecules attached to a mitochondrion can sustain prolonged motile associations with actin in a CaM- and calcium-dependent manner. Based on these properties, we propose that Myo19 can function in mitochondria transport along actin filaments, tension generation on multiple randomly oriented filaments, and/or pushing against branched actin networks assembled near the membrane surface.


Asunto(s)
Calmodulina , Miosinas , Humanos , Actinas/metabolismo , Calcio/metabolismo , Calmodulina/metabolismo , Células HeLa , Miosinas/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(2): e2216903120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36598948

RESUMEN

KIF1A is a highly processive vesicle transport motor in the kinesin-3 family. Mutations in KIF1A lead to neurodegenerative diseases including hereditary spastic paraplegia. We applied optical tweezers to study the ability of KIF1A to generate and sustain force against hindering loads. We used both the three-bead assay, where force is oriented parallel to the microtubule, and the traditional single-bead assay, where force is directed along the radius of the bead, resulting in a vertical force component. The average force and attachment duration of KIF1A in the three-bead assay were substantially greater than those observed in the single-bead assay. Thus, vertical forces accelerate termination of force ramps of KIF1A. Average KIF1A termination forces were slightly lower than the kinesin-1 KIF5B, and the median attachment duration of KIF1A was >10-fold shorter than KIF5B under hindering loads. KIF1A rapidly reengages with microtubules after detachment, as observed previously. Strikingly, quantification enabled by the three-bead assay shows that reengagement largely occurs within 2 ms of detachment, indicating that KIF1A has a nearly 10-fold faster reengagement rate than KIF5B. We found that rapid microtubule reengagement is not due to KIF1A's positively charged loop-12; however, removal of charge from this loop diminished the unloaded run length at near physiological ionic strength. Both loop-12 and the microtubule nucleotide state have modulatory effects on reengagement under load, suggesting a role for the microtubule lattice in KIF1A reengagement. Our results reveal adaptations of KIF1A that lead to a model of superengaging transport under load.


Asunto(s)
Cinesinas , Paraplejía Espástica Hereditaria , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Mutación , Paraplejía Espástica Hereditaria/genética , Transporte Biológico , Microtúbulos/metabolismo
10.
Methods Mol Biol ; 2478: 513-557, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36063333

RESUMEN

Interactions between biological molecules occur on very different time scales, from the minutes of strong protein-protein bonds, down to below the millisecond duration of rapid biomolecular interactions. Conformational changes occurring on sub-ms time scales and their mechanical force dependence underlie the functioning of enzymes (e.g., motor proteins) that are fundamental for life. However, such rapid interactions are beyond the temporal resolution of most single-molecule methods. We developed ultrafast force-clamp spectroscopy (UFFCS), a single-molecule technique based on laser tweezers that allows us to investigate early and very fast dynamics of a variety of enzymes and their regulation by mechanical load. The technique was developed to investigate the rapid interactions between skeletal muscle myosin and actin, and then applied to the study of different biological systems, from cardiac myosin to processive myosin V, microtubule-binding proteins, transcription factors, and mechanotransducer proteins. Here, we describe two different implementations of UFFCS instrumentation and protocols using either acousto- or electro-optic laser beam deflectors, and their application to the study of processive and non-processive motor proteins.


Asunto(s)
Miosinas , Pinzas Ópticas , Actinas/metabolismo , Miosinas/metabolismo , Óptica y Fotónica , Unión Proteica
11.
Methods Mol Biol ; 2478: 559-583, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36063334

RESUMEN

The cytoskeletal motors myosin, kinesin, and dynein and their corresponding tracks, actin and microtubules, are force generating ATPases responsible for motility and morphological changes at the intracellular, cellular, and tissue levels. The pioneering application of optical tweezers to measure the force-producing properties of cytoskeletal motors has provided an unparalleled understanding of their mechanochemistry. The mechanosensitivity of processive, microtubule-based motors has largely been studied in the optical trap using the "single-bead" assay, where a bead-attached motor is held adjacent to a cytoskeletal filament as it processively steps along it. However, because of the geometrical constraints in the conventional single-bead assay, the motor-filament bond is not only loaded parallel to the long axis of the filament, but also perpendicular to the long axis of the filament. This perpendicular force, which is inherent in the conventional single-bead assay, accelerates the motor-filament detachment and has not been carefully considered in prior experiments. An alternative approach is the "three-bead" assay, which was developed for the study of non-processive myosin motors. The vertical force component is minimized in this assay, and the total opposing force is mainly parallel to the microtubule. Experiments with kinesin show that microtubule attachment durations can be highly variable and last for up to tenfold longer times in the three-bead assay, compared to the single-bead assay. Thus, the ability of kinesin to bear mechanical load and remain attached to microtubules depends on the forces in more than one dimension. In this chapter, we provide detailed methods for preparing the proteins, buffers, flow chambers, and bead-filament assemblies for performing the three-bead assay with microtubules and their motors.


Asunto(s)
Cinesinas , Microtúbulos , Citoesqueleto/metabolismo , Dineínas/metabolismo , Microtúbulos/metabolismo , Pinzas Ópticas
12.
J Clin Invest ; 132(5)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35229734

RESUMEN

Myosin modulators are a novel class of pharmaceutical agents that are being developed to treat patients with a range of cardiomyopathies. The therapeutic goal of these drugs is to target cardiac myosins directly to modulate contractility and cardiac power output to alleviate symptoms that lead to heart failure and arrhythmias, without altering calcium signaling. In this Review, we discuss two classes of drugs that have been developed to either activate (omecamtiv mecarbil) or inhibit (mavacamten) cardiac contractility by binding to ß-cardiac myosin (MYH7). We discuss progress in understanding the mechanisms by which the drugs alter myosin mechanochemistry, and we provide an appraisal of the results from clinical trials of these drugs, with consideration for the importance of disease heterogeneity and genetic etiology for predicting treatment benefit.


Asunto(s)
Cardiomiopatías , Insuficiencia Cardíaca , Miosinas Cardíacas/genética , Miosinas Cardíacas/metabolismo , Miosinas Cardíacas/uso terapéutico , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/genética , Insuficiencia Cardíaca/tratamiento farmacológico , Humanos , Contracción Miocárdica , Miosinas/metabolismo , Urea
13.
Mol Biol Cell ; 33(6): ar52, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-34705476

RESUMEN

Microtubules establish the directionality of intracellular transport by kinesins and dynein through polarized assembly, but it remains unclear how directed transport occurs along microtubules organized with mixed polarity. We investigated the ability of the plus end-directed kinesin-4 motor KIF21B to navigate mixed polarity microtubules in mammalian dendrites. Reconstitution assays with recombinant KIF21B and engineered microtubule bundles or extracted neuronal cytoskeletons indicate that nucleotide-independent microtubule-binding regions of KIF21B modulate microtubule dynamics and promote directional switching on antiparallel microtubules. Optogenetic recruitment of KIF21B to organelles in live neurons induces unidirectional transport in axons but bidirectional transport with a net retrograde bias in dendrites. Removal of the secondary microtubule-binding regions of KIF21B or dampening of microtubule dynamics with low concentrations of nocodazole eliminates retrograde bias in live dendrites. Further exploration of the contribution of microtubule dynamics in dendrites to directionality revealed plus end-out microtubules to be more dynamic than plus end-in microtubules, with nocodazole preferentially stabilizing the plus end-out population. We propose a model in which both nucleotide-sensitive and -insensitive microtubule-binding sites of KIF21B motors contribute to the search and selection of stable plus end-in microtubules within the mixed polarity microtubule arrays characteristic of mammalian dendrites to achieve net retrograde movement of KIF21B-bound cargoes.


Asunto(s)
Dendritas , Cinesinas , Animales , Dendritas/fisiología , Mamíferos , Microtúbulos/fisiología , Neuronas , Nocodazol/farmacología , Nucleótidos
14.
Mol Biol Cell ; 32(9): 931-941, 2021 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-33788586

RESUMEN

Improvements to particle tracking algorithms are required to effectively analyze the motility of biological molecules in complex or noisy systems. A typical single particle tracking (SPT) algorithm detects particle coordinates for trajectory assembly. However, particle detection filters fail for data sets with low signal-to-noise levels. When tracking molecular motors in complex systems, standard techniques often fail to separate the fluorescent signatures of moving particles from background signal. We developed an approach to analyze the motility of kinesin motor proteins moving along the microtubule cytoskeleton of extracted neurons using the Kullback-Leibler divergence to identify regions where there are significant differences between models of moving particles and background signal. We tested our software on both simulated and experimental data and found a noticeable improvement in SPT capability and a higher identification rate of motors as compared with current methods. This algorithm, called Cega, for "find the object," produces data amenable to conventional blob detection techniques that can then be used to obtain coordinates for downstream SPT processing. We anticipate that this algorithm will be useful for those interested in tracking moving particles in complex in vitro or in vivo environments.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Cinesinas/metabolismo , Imagen Individual de Molécula/métodos , Algoritmos , Artefactos , Simulación por Computador , Células HeLa , Humanos , Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Microtúbulos/fisiología , Programas Informáticos
15.
Elife ; 102021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33605878

RESUMEN

Hypertrophic cardiomyopathies (HCMs) are the leading cause of acute cardiac failure in young individuals. Over 300 mutations throughout ß-cardiac myosin, including in the motor domain, are associated with HCM. A ß-cardiac myosin motor mutation (R712L) leads to a severe form of HCM. Actin-gliding motility of R712L-myosin is inhibited, despite near-normal ATPase kinetics. By optical trapping, the working stroke of R712L-myosin was decreased 4-fold, but actin-attachment durations were normal. A prevalent hypothesis that HCM mutants are hypercontractile is thus not universal. R712 is adjacent to the binding site of the heart failure drug omecamtiv mecarbil (OM). OM suppresses the working stroke of normal ß-cardiac myosin, but remarkably, OM rescues the R712L-myosin working stroke. Using a flow chamber to interrogate a single molecule during buffer exchange, we found OM rescue to be reversible. Thus, the R712L mutation uncouples lever arm rotation from ATPase activity and this inhibition is rescued by OM.


Asunto(s)
Cardiomegalia/tratamiento farmacológico , Cardiotónicos/farmacología , Insuficiencia Cardíaca/tratamiento farmacológico , Mutación , Urea/análogos & derivados , Miosinas Ventriculares/genética , Humanos , Urea/farmacología , Miosinas Ventriculares/química
16.
Proc Natl Acad Sci U S A ; 117(27): 15632-15641, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571914

RESUMEN

KIF3AC is a mammalian neuron-specific kinesin-2 implicated in intracellular cargo transport. It is a heterodimer of KIF3A and KIF3C motor polypeptides which have distinct biochemical and motile properties as engineered homodimers. Single-molecule motility assays show that KIF3AC moves processively along microtubules at a rate faster than expected given the motility rates of the KIF3AA and much slower KIF3CC homodimers. To resolve the stepping kinetics of KIF3A and KIF3C motors in homo- and heterodimeric constructs and determine their transport potential under load, we assayed motor activity using interferometric scattering microscopy and optical trapping. The distribution of stepping durations of KIF3AC molecules is described by a rate (k1 = 11 s-1) without apparent kinetic asymmetry. Asymmetry was also not apparent under hindering or assisting mechanical loads in the optical trap. KIF3AC shows increased force sensitivity relative to KIF3AA yet is more capable of stepping against mechanical load than KIF3CC. Interestingly, the behavior of KIF3C mirrors prior studies of kinesins with increased interhead compliance. Microtubule gliding assays containing 1:1 mixtures of KIF3AA and KIF3CC result in speeds similar to KIF3AC, suggesting the homodimers mechanically impact each other's motility to reproduce the behavior of the heterodimer. Our observations are consistent with a mechanism in which the stepping of KIF3C can be activated by KIF3A in a strain-dependent manner, similar to application of an assisting load. These results suggest that the mechanochemical properties of KIF3AC can be explained by the strain-dependent kinetics of KIF3A and KIF3C.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Multimerización de Proteína/fisiología , Fenómenos Biomecánicos , Cinética , Proteínas Recombinantes/metabolismo
17.
J Biol Chem ; 295(12): 3749-3756, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-31811090

RESUMEN

Myosin-IC (Myo1c) has been proposed to function in delivery of glucose transporter type 4 (GLUT4)-containing vesicles to the plasma membrane in response to insulin stimulation. Current evidence suggests that, upon insulin stimulation, Myo1c is phosphorylated at Ser701, leading to binding of the signaling protein 14-3-3ß. Biochemical and functional details of the Myo1c-14-3-3ß interaction have yet to be described. Using recombinantly expressed proteins and mass spectrometry-based analyses to monitor Myo1c phosphorylation, along with pulldown, fluorescence binding, and additional biochemical assays, we show here that 14-3-3ß is a dimer and, consistent with previous work, that it binds to Myo1c in the presence of calcium. This interaction was associated with dissociation of calmodulin (CaM) from the IQ motif in Myo1c. Surprisingly, we found that 14-3-3ß binds to Myo1c independent of Ser701 phosphorylation in vitro Additionally, in contrast to previous reports, we did not observe Myo1c Ser701 phosphorylation by Ca2+/CaM-dependent protein kinase II (CaMKII), although CaMKII phosphorylated four other Myo1c sites. The presence of 14-3-3ß had little effect on the actin-activated ATPase or motile activities of Myo1c. Given these results, it is unlikely that 14-3-3ß acts as a cargo adaptor for Myo1c-powered transport; rather, we propose that 14-3-3ß binds Myo1c in the presence of calcium and stabilizes the calmodulin-dissociated, nonmotile myosin.


Asunto(s)
Proteínas 14-3-3/metabolismo , Miosina Tipo I/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Secuencias de Aminoácidos , Calcio/química , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calmodulina/metabolismo , Dimerización , Ácido Egtácico/química , Humanos , Espectrometría de Masas , Miosina Tipo I/química , Miosina Tipo I/genética , Fosforilación , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Ultracentrifugación
18.
Biophys J ; 118(1): 243-253, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31883614

RESUMEN

Kinesin motors and their associated microtubule tracks are essential for long-distance transport of cellular cargos. Intracellular activity and proper recruitment of kinesins is regulated by biochemical signaling, cargo adaptors, microtubule-associated proteins, and mechanical forces. In this study, we found that the effect of opposing forces on the kinesin-microtubule attachment duration depends strongly on experimental assay geometry. Using optical tweezers and the conventional single-bead assay, we show that detachment of kinesin from the microtubule is likely accelerated by forces vertical to the long axis of the microtubule due to contact of the single bead with the underlying microtubule. We used the three-bead assay to minimize the vertical force component and found that when the opposing forces are mainly parallel to the microtubule, the median value of attachment durations between kinesin and microtubules can be up to 10-fold longer than observed using the single-bead assay. Using the three-bead assay, we also found that not all microtubule protofilaments are equivalent interacting substrates for kinesin and that the median value of attachment durations of kinesin varies by more than 10-fold, depending on the relative angular position of the forces along the circumference of the microtubule. Thus, depending on the geometry of forces across the microtubule, kinesin can switch from a fast detaching motor (median attachment duration <0.2 s) to a persistent motor that sustains attachment (median attachment duration >3 s) at high forces (5 pN). Our data show that the load-bearing capacity of the kinesin motor is highly variable and can be dramatically affected by off-axis forces and forces across the microtubule lattice, which has implications for a range of cellular activities, including cell division and organelle transport.


Asunto(s)
Cinesinas/metabolismo , Microtúbulos/metabolismo , Pinzas Ópticas , Fenómenos Biomecánicos , Soporte de Peso
19.
Elife ; 82019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31526481

RESUMEN

Key steps of cardiac mechanochemistry, including the force-generating working stroke and the release of phosphate (Pi), occur rapidly after myosin-actin attachment. An ultra-high-speed optical trap enabled direct observation of the timing and amplitude of the working stroke, which can occur within <200 µs of actin binding by ß-cardiac myosin. The initial actomyosin state can sustain loads of at least 4.5 pN and proceeds directly to the stroke or detaches before releasing ATP hydrolysis products. The rates of these processes depend on the force. The time between binding and stroke is unaffected by 10 mM Pi which, along with other findings, indicates the stroke precedes phosphate release. After Pi release, Pi can rebind enabling reversal of the working stroke. Detecting these rapid events under physiological loads provides definitive indication of the dynamics by which actomyosin converts biochemical energy into mechanical work.


Asunto(s)
Miosinas Cardíacas/metabolismo , Fenómenos Mecánicos , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Células Cultivadas , Humanos , Hidrólisis , Mioblastos , Unión Proteica , Imagen Individual de Molécula
20.
Mol Biol Cell ; 30(6): 734, 2019 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-30870091
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA