Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros




Base de datos
Asunto principal
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(4): 2213-2224, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35119266

RESUMEN

Oxidation of the monoterpene Δ3-carene (C10H16) is a potentially important and understudied source of atmospheric secondary organic aerosol (SOA). We present chamber-based measurements of speciated gas and particle phases during photochemical oxidation of Δ3-carene. We find evidence of highly oxidized organic molecules (HOMs) in the gas phase and relatively low-volatility SOA dominated by C7-C10 species. We then use computational methods to develop the first stages of a Δ3-carene photochemical oxidation mechanism and explain some of our measured compositions. We find that alkoxy bond scission of the cyclohexyl ring likely leads to efficient HOM formation, in line with previous studies. We also find a surprising role for the abstraction of primary hydrogens from methyl groups, which has been calculated to be rapid in the α-pinene system, and suggest more research is required to determine if this is more general to other systems and a feature of autoxidation. This work develops a more comprehensive view of Δ3-carene photochemical oxidation products via measurements and lays out a suggested mechanism of oxidation via computationally derived rate coefficients.


Asunto(s)
Monoterpenos , Aerosoles/química , Monoterpenos Bicíclicos , Monoterpenos/química , Oxidación-Reducción
2.
J Phys Chem A ; 124(14): 2885-2896, 2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32196338

RESUMEN

Monoterpenes are a group of volatile organic compounds (VOCs) emitted to the atmosphere in large amounts. Studies have linked the autoxidation of monoterpenes to the formation of secondary organic aerosols, which impact Earth's climate and human health. Here, we study the hydroxy peroxy radicals formed by OH- and O2-addition to the six atmospherically relevant monoterpenes α-pinene, ß-pinene, Δ3-carene, camphene, limonene, and terpinolene. The six monoterpenes all have a six-membered ring but differ in the binding pattern of the four remaining carbon atoms and the position of the double bond(s). We use a multiconformer transition state theory approach to calculate the rate coefficients of the peroxy radical hydrogen-shift (H-shift) and endoperoxide formation reactions of these peroxy radicals. Our results suggest that primarily the isomers with a carbon-carbon double bond remaining after OH- and O2-addition undergo unimolecular reactions with rate coefficients large enough to be of atmospheric importance. This greatly limits the number of potentially important unimolecular pathways. Specifically, we find that the ring-opened α- and ß-pinene isomers as well as isomers of limonene and terpinolene have unimolecular reactions that are fast enough to likely dominate their reactivity under most atmospheric conditions.

3.
J Phys Chem A ; 123(8): 1661-1674, 2019 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-30700088

RESUMEN

Atmospheric oxidation of monoterpenes (emitted primarily by evergreen trees) is known to contribute to the formation and growth of aerosol particles. While recent research has tied the formation of organic aerosol to unimolecular chemistry of the organic peroxy radicals (RO2) formed in the oxidation of monoterpenes, the fundamental physical chemistry of these RO2 remains obscure. Here we use isomer-specific measurements and ab initio calculations to determine the unimolecular reaction rates and products of RO2 derived from the hydroxyl radical (OH) oxidation of α-pinene and ß-pinene. Among all of the structural isomers of the first-generation RO2 from both monoterpenes, we find that the first-generation RO2 produced following opening of the four-membered ring undergo fast unimolecular reactions (4 ± 2 and 16 ± 5 s-1 for α-pinene and ß-pinene, respectively) at 296 K, in agreement with high-level ab initio calculations. The presence of the hydroxy group and carbon-carbon double bond in the ring-opened RO2 enhances the rates of these unimolecular reactions, including endo-cyclization and H-shift via transition states involving six- and seven-membered rings. These reaction rate coefficients are sufficiently large that unimolecular chemistry is the dominant fate of these monoterpene-derived RO2 in the atmosphere. In addition, the overall yields of first-generation α-pinene and ß-pinene hydroxy nitrates, C10H17NO4, at 296 K and 745 Torr are measured to be 3.3 ± 1.5% and 6.4 ± 2.1%, respectively, for conditions where all RO2 are expected to react with NO ([NO] > 1000 ppbv). These yields are lower than anticipated.

4.
J Phys Chem A ; 123(2): 590-600, 2019 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-30547575

RESUMEN

Gas-phase autoxidation - the sequential regeneration of peroxy radicals (RO2) via intramolecular hydrogen shifts (H-shifts) followed by oxygen addition - leads to the formation of organic hydroperoxides. The atmospheric fate of these peroxides remains unclear, including the potential for further H-shift chemistry. Here, we report H-shift rate coefficients for a system of RO2 with hydroperoxide functionality produced in the OH-initiated oxidation of 2-hydroperoxy-2-methylpentane. The initial RO2 formed in this chemistry are unable to undergo α-OOH H-shift (HOOC-H) reactions. However, these RO2 rapidly isomerize (>100 s-1 at 296 K) by H-shift of the hydroperoxy hydrogen (ROO-H) to produce a hydroperoxy-substituted RO2 with an accessible α-OOH hydrogen. First order rate coefficients for the 1,5 H-shift of the α-OOH hydrogen are measured to be ∼0.04 s-1 (296 K) and ∼0.1 s-1 (318 K), within 50% of the rate coefficients calculated using multiconformer transition state theory. Reaction of the RO2 with NO produces alkoxy radicals which also undergo rapid isomerization via 1,6 and 1,5 H-shift of the hydroperoxy hydrogen (ROO-H) to produce RO2 with alcohol functionality. One of these hydroxy-substituted RO2 exhibits a 1,5 α-OH (HOC-H) H-shift, measured to be ∼0.2 s-1 (296 K) and ∼0.6 s-1 (318 K), again in agreement with the calculated rates. Thus, the rapid shift of hydroperoxy hydrogens in alkoxy and peroxy radicals enables intramolecular reactions that would otherwise be inaccessible.

5.
J Phys Chem A ; 122(43): 8665-8673, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30269495

RESUMEN

Peroxy radical hydrogen shift (H-shift) reactions are key to the formation of highly oxidized organic molecules and particle growth in the atmosphere. In an H-shift reaction, a hydrogen atom is transferred to the peroxy radical from within the same molecule to form a hydroperoxy alkyl radical, which can undergo O2 uptake and further H-shift reactions. Here we use an experimentally verified theoretical approach based on multi-conformer transition state theory to calculate rate constants for a systematic set of H-shifts. Our results show that substitution at the carbon, from which the hydrogen is abstracted, with OH, OOH, and OCH3 substituents lead to increases in the rate constant by factors of 50 or more. Reactions with C═O and C═C substituents lead to resonance stabilized carbon radicals and have rate constants that increase by more than a factor of 400. In addition, our results show that reactions leading to secondary carbon radicals (alkyl substituent) are 100 times faster than those leading to primary carbon radicals, and those leading to tertiary carbon radicals a factor of 30 faster than those leading to secondary carbon radicals. When the carbon from which the H is abstracted is secondary and has an OH, OOH, OCH3, C═O, or C═C substituent, H-shift rate constants are larger than 0.01 s-1 and need to be considered in most atmospheric conditions. H-shift reaction rate constants are largest and can reach 1 s-1 when the ring size in the transition state is 6, 7, or 8 atoms (1,5, 1,6, or 1,7 H-shift). Thus, H-shift reactions are likely much more prevalent in the atmosphere than previously considered.

6.
Proc Natl Acad Sci U S A ; 115(1): 64-69, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29255042

RESUMEN

Gas-phase autoxidation-regenerative peroxy radical formation following intramolecular hydrogen shifts-is known to be important in the combustion of organic materials. The relevance of this chemistry in the oxidation of organics in the atmosphere has received less attention due, in part, to the lack of kinetic data at relevant temperatures. Here, we combine computational and experimental approaches to investigate the rate of autoxidation for organic peroxy radicals (RO2) produced in the oxidation of a prototypical atmospheric pollutant, n-hexane. We find that the reaction rate depends critically on the molecular configuration of the RO2 radical undergoing hydrogen transfer (H-shift). RO2 H-shift rate coefficients via transition states involving six- and seven-membered rings (1,5 and 1,6 H-shifts, respectively) of α-OH hydrogens (HOC-H) formed in this system are of order 0.1 s-1 at 296 K, while the 1,4 H-shift is calculated to be orders of magnitude slower. Consistent with H-shift reactions over a substantial energetic barrier, we find that the rate coefficients of these reactions increase rapidly with temperature and exhibit a large, primary, kinetic isotope effect. The observed H-shift rate coefficients are sufficiently fast that, as a result of ongoing NO x emission reductions, autoxidation is now competing with bimolecular chemistry even in the most polluted North American cities, particularly during summer afternoons when NO levels are low and temperatures are elevated.

7.
J Phys Chem A ; 122(1): 269-279, 2018 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-29200296

RESUMEN

High pressure anion chemical ionization is commonly used for the detection of neutral molecules in the gas phase. The detection efficiency in these measurements depends on how strongly the reagent ion binds to the neutral target molecule. We have calculated the binding strength of nitrate (NO3-), acetate (CH3C(O)O-), lactate (CH3CH(OH)C(O)O-), trifluoroacetate (CF3C(O)O-), trifluoromethanolate (CF3O-), bromide (Br-), and iodide (I-) reagent ions to ten different products derived from the OH radical-initiated oxidation of butadiene. We found that the binding of these oxidation products to the reagent ions depends almost linearly on the number of oxygen atoms in the target molecule, with the precise chemical identity of the compound (e.g., the number and relative position of hydroxyl or hydroperoxy groups) playing a more minor role. For acetate, the formation free energy decreases on average by around 4 kcal/mol when the number of oxygen atoms in the sample molecule increases by one. For the other reagent ions the corresponding decrease is around 3 kcal/mol. For all of the molecules studied, acetate forms the most stable clusters and I- the least stable. We also investigated the effect of humidity on the chemical ionization by calculating how strongly water molecules bind to both the reagent ions and the ion-molecule clusters. Water binds much more strongly to the reagent ion monomers compared to the reagent ion "dimers" (defined here as a cluster of the reagent anion with the corresponding neutral conjugate acid, e.g., HNO3(NO3-)) or the ion-molecule clusters. This likely leads to a stronger humidity dependence when using reagent ions that are not able to form reagent ion dimers (such as CF3C(O)O-, CF3O-, Br-, and I-).

8.
Nat Commun ; 7: 13677, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27910849

RESUMEN

Explaining the formation of secondary organic aerosol is an intriguing question in atmospheric sciences because of its importance for Earth's radiation budget and the associated effects on health and ecosystems. A breakthrough was recently achieved in the understanding of secondary organic aerosol formation from ozone reactions of biogenic emissions by the rapid formation of highly oxidized multifunctional organic compounds via autoxidation. However, the important daytime hydroxyl radical reactions have been considered to be less important in this process. Here we report measurements on the reaction of hydroxyl radicals with α- and ß-pinene applying improved mass spectrometric methods. Our laboratory results prove that the formation of highly oxidized products from hydroxyl radical reactions proceeds with considerably higher yields than previously reported. Field measurements support these findings. Our results allow for a better description of the diurnal behaviour of the highly oxidized product formation and subsequent secondary organic aerosol formation in the atmosphere.

9.
J Phys Chem A ; 120(51): 10072-10087, 2016 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-27992191

RESUMEN

Based on a small test system, (R)-CH(OH)(OO·)CH2CHO, we have developed a cost-effective approach to the practical implementation of multiconformer transition state theory for peroxy radical hydrogen shift reactions at atmospherically relevant temperatures. While conformer searching is crucial for accurate reaction rates, an energy cutoff can be used to significantly reduce the computational cost with little loss of accuracy. For the reaction barrier, high-level calculations are needed, but the highest level of electronic structure theory is not necessary for the relative energy between conformers. Improving the approach to both transition state theory and electronic structure theory decreases the calculated reaction rate significantly, so low-level calculations can be used to rule out slow reactions. Further computational time can be saved by approximating the tunneling coefficients for each transition state by only that of the lowest-energy transition state. Finally, we test and validate our approach using higher-level theoretical values for our test system and existing experimental results for additional peroxy radical hydrogen shift reactions in three slightly larger systems.

10.
J Phys Chem A ; 120(2): 266-75, 2016 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-26669355

RESUMEN

Using quantum mechanical calculations, we have investigated hydrogen shift (H-shift) reactions in peroxy radicals derived from the atmospheric oxidation of 1-pentene (CH2═CHCH2CH2CH3) and its monosubstituted derivatives. We investigate the peroxy radicals, HOCH2CH(OO)CR1HCH2CH3, HOCH2CH(OO)CH2CR1HCH3, and HOCH2CH(OO)CH2CH2CR1H2, where the substituent R1 is an alcoholic (OH), a hydroperoxy (OOH), or a methoxy (OCH3) group. For peroxy radicals with an OOH substituent, the H-shift reaction from the hydrogen atom on the OOH group to the OO group is extremely fast. We find that the rate constants of this type of H-shift reactions are greater than 10(3) s(-1) for both the forward and the reverse reactions. It leads to the formation of two different radical isomers that react through different reaction mechanisms and yield different products. These very fast H-shift reactions are much faster than the reactions with NO and HO2 under most atmospheric conditions and must be included in the atmospheric modeling of volatile organic compounds where hydroperoxy peroxy radicals are formed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA